Skip to content
This repository has been archived by the owner on Oct 31, 2023. It is now read-only.

Fbnet benchmark #507

Merged
merged 4 commits into from
Mar 7, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions MODEL_ZOO.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,28 @@ backbone | type | lr sched | im / gpu | train mem(GB) | train time (s/iter) | to
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
R-50-FPN | Keypoint | 1x | 2 | 5.7 | 0.3771 | 9.4 | 0.10941 | 53.7 | 64.3 | 9981060

### Light-weight Model baselines

We provided pre-trained models for selected FBNet models.
* All the models are trained from scratched with BN using the training schedule specified below.
* Evaluation is performed on a single NVIDIA V100 GPU with `MODEL.RPN.POST_NMS_TOP_N_TEST` set to `200`.

The following inference time is reported:
* inference total batch=8: Total inference time including data loading, model inference and pre/post preprocessing using 8 images per batch.
* inference model batch=8: Model inference time only and using 8 images per batch.
* inference model batch=1: Model inference time only and using 1 image per batch.
* inferenee caffe2 batch=1: Model inference time for the model in Caffe2 format using 1 image per batch. The Caffe2 models fused the BN to Conv and purely run on C++/CUDA by using Caffe2 ops for rpn/detection post processing.

The pre-trained models are available in the link in the model id.

backbone | type | resolution | lr sched | im / gpu | train mem(GB) | train time (s/iter) | total train time (hr) | inference total batch=8 (s/im) | inference model batch=8 (s/im) | inference model batch=1 (s/im) | inference caffe2 batch=1 (s/im) | box AP | mask AP | model id
newstzpz marked this conversation as resolved.
Show resolved Hide resolved
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
[R-50-C4](configs/e2e_faster_rcnn_R_50_C4_1x.yaml) (reference) | Fast | 800 | 1x | 1 | 5.8 | 0.4036 | 20.2 | 0.0875 | **0.0793** | 0.0831 | **0.0625** | 34.4 | - | f35857197
[fbnet_chamv1a](configs/e2e_faster_rcnn_fbnet_chamv1a_600.yaml) | Fast | 600 | 0.75x | 12 | 13.6 | 0.5444 | 20.5 | 0.0315 | **0.0260** | 0.0376 | **0.0188** | 33.5 | - | [f100940543](https://download.pytorch.org/models/maskrcnn/e2e_faster_rcnn_fbnet_chamv1a_600.pth)
[fbnet_default](configs/e2e_faster_rcnn_fbnet_600.yaml) | Fast | 600 | 0.5x | 16 | 11.1 | 0.4872 | 12.5 | 0.0316 | **0.0250** | 0.0297 | **0.0130** | 28.2 | - | [f101086388](https://download.pytorch.org/models/maskrcnn/e2e_faster_rcnn_fbnet_600.pth)
[R-50-C4](configs/e2e_mask_rcnn_R_50_C4_1x.yaml) (reference) | Mask | 800 | 1x | 1 | 5.8 | 0.452 | 22.6 | 0.0918 | **0.0848** | 0.0844 | - | 35.2 | 31.0 | f35858791
[fbnet_xirb16d](configs/e2e_mask_rcnn_fbnet_xirb16d_dsmask_600.yaml) | Mask | 600 | 0.5x | 16 | 13.4 | 1.1732 | 29 | 0.0386 | **0.0319** | 0.0356 | - | 30.7 | 26.9 | [f101086394](https://download.pytorch.org/models/maskrcnn/e2e_mask_rcnn_fbnet_xirb16d_dsmask.pth)
[fbnet_default](configs/e2e_mask_rcnn_fbnet_600.yaml) | Mask | 600 | 0.5x | 16 | 13.0 | 0.9036 | 23.0 | 0.0327 | **0.0269** | 0.0385 | - | 29.0 | 26.1 | [f101086385](https://download.pytorch.org/models/maskrcnn/e2e_mask_rcnn_fbnet_600.pth)

## Comparison with Detectron and mmdetection

Expand Down
2 changes: 1 addition & 1 deletion configs/e2e_faster_rcnn_fbnet.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ MODEL:
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 1000
POST_NMS_TOP_N_TEST: 100
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
Expand Down
2 changes: 1 addition & 1 deletion configs/e2e_faster_rcnn_fbnet_600.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ MODEL:
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 1000
POST_NMS_TOP_N_TEST: 200
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
Expand Down
44 changes: 44 additions & 0 deletions configs/e2e_faster_rcnn_fbnet_chamv1a_600.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
CONV_BODY: FBNet
FBNET:
ARCH: "cham_v1a"
BN_TYPE: "bn"
WIDTH_DIVISOR: 8
DW_CONV_SKIP_BN: True
DW_CONV_SKIP_RELU: True
RPN:
ANCHOR_SIZES: (32, 64, 128, 256, 512)
ANCHOR_STRIDE: (16, )
BATCH_SIZE_PER_IMAGE: 256
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 200
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 128
ROI_BOX_HEAD:
POOLER_RESOLUTION: 6
FEATURE_EXTRACTOR: FBNet.roi_head
NUM_CLASSES: 81
DATASETS:
TRAIN: ("coco_2014_train", "coco_2014_valminusminival")
TEST: ("coco_2014_minival",)
SOLVER:
BASE_LR: 0.045
WARMUP_FACTOR: 0.1
WEIGHT_DECAY: 0.0001
STEPS: (90000, 120000)
MAX_ITER: 135000
IMS_PER_BATCH: 96 # for 8GPUs
# TEST:
# IMS_PER_BATCH: 8
INPUT:
MIN_SIZE_TRAIN: (600, )
MAX_SIZE_TRAIN: 1000
MIN_SIZE_TEST: 600
MAX_SIZE_TEST: 1000
PIXEL_MEAN: [103.53, 116.28, 123.675]
PIXEL_STD: [57.375, 57.12, 58.395]
4 changes: 2 additions & 2 deletions configs/e2e_mask_rcnn_fbnet.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,15 +8,15 @@ MODEL:
WIDTH_DIVISOR: 8
DW_CONV_SKIP_BN: True
DW_CONV_SKIP_RELU: True
DET_HEAD_LAST_SCALE: -1.0
DET_HEAD_LAST_SCALE: 0.0
RPN:
ANCHOR_SIZES: (16, 32, 64, 128, 256)
ANCHOR_STRIDE: (16, )
BATCH_SIZE_PER_IMAGE: 256
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 1000
POST_NMS_TOP_N_TEST: 100
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
Expand Down
52 changes: 52 additions & 0 deletions configs/e2e_mask_rcnn_fbnet_600.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
CONV_BODY: FBNet
FBNET:
ARCH: "default"
BN_TYPE: "bn"
WIDTH_DIVISOR: 8
DW_CONV_SKIP_BN: True
DW_CONV_SKIP_RELU: True
DET_HEAD_LAST_SCALE: 0.0
RPN:
ANCHOR_SIZES: (32, 64, 128, 256, 512)
ANCHOR_STRIDE: (16, )
BATCH_SIZE_PER_IMAGE: 256
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 200
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
ROI_BOX_HEAD:
POOLER_RESOLUTION: 6
FEATURE_EXTRACTOR: FBNet.roi_head
NUM_CLASSES: 81
ROI_MASK_HEAD:
POOLER_RESOLUTION: 6
FEATURE_EXTRACTOR: FBNet.roi_head_mask
PREDICTOR: "MaskRCNNConv1x1Predictor"
RESOLUTION: 12
SHARE_BOX_FEATURE_EXTRACTOR: False
MASK_ON: True
DATASETS:
TRAIN: ("coco_2014_train", "coco_2014_valminusminival")
TEST: ("coco_2014_minival",)
SOLVER:
BASE_LR: 0.06
WARMUP_FACTOR: 0.1
WEIGHT_DECAY: 0.0001
STEPS: (60000, 80000)
MAX_ITER: 90000
IMS_PER_BATCH: 128 # for 8GPUs
# TEST:
# IMS_PER_BATCH: 8
INPUT:
MIN_SIZE_TRAIN: (600, )
MAX_SIZE_TRAIN: 1000
MIN_SIZE_TEST: 600
MAX_SIZE_TEST: 1000
PIXEL_MEAN: [103.53, 116.28, 123.675]
PIXEL_STD: [57.375, 57.12, 58.395]
2 changes: 1 addition & 1 deletion configs/e2e_mask_rcnn_fbnet_xirb16d_dsmask.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ MODEL:
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 1000
POST_NMS_TOP_N_TEST: 100
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
Expand Down
52 changes: 52 additions & 0 deletions configs/e2e_mask_rcnn_fbnet_xirb16d_dsmask_600.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
CONV_BODY: FBNet
FBNET:
ARCH: "xirb16d_dsmask"
BN_TYPE: "bn"
WIDTH_DIVISOR: 8
DW_CONV_SKIP_BN: True
DW_CONV_SKIP_RELU: True
DET_HEAD_LAST_SCALE: 0.0
RPN:
ANCHOR_SIZES: (32, 64, 128, 256, 512)
ANCHOR_STRIDE: (16, )
BATCH_SIZE_PER_IMAGE: 256
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 200
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
ROI_BOX_HEAD:
POOLER_RESOLUTION: 6
FEATURE_EXTRACTOR: FBNet.roi_head
NUM_CLASSES: 81
ROI_MASK_HEAD:
POOLER_RESOLUTION: 6
FEATURE_EXTRACTOR: FBNet.roi_head_mask
PREDICTOR: "MaskRCNNConv1x1Predictor"
RESOLUTION: 12
SHARE_BOX_FEATURE_EXTRACTOR: False
MASK_ON: True
DATASETS:
TRAIN: ("coco_2014_train", "coco_2014_valminusminival")
TEST: ("coco_2014_minival",)
SOLVER:
BASE_LR: 0.06
WARMUP_FACTOR: 0.1
WEIGHT_DECAY: 0.0001
STEPS: (60000, 80000)
MAX_ITER: 90000
IMS_PER_BATCH: 128 # for 8GPUs
# TEST:
# IMS_PER_BATCH: 8
INPUT:
MIN_SIZE_TRAIN: (600, )
MAX_SIZE_TRAIN: 1000
MIN_SIZE_TEST: 600
MAX_SIZE_TEST: 1000
PIXEL_MEAN: [103.53, 116.28, 123.675]
PIXEL_STD: [57.375, 57.12, 58.395]
31 changes: 23 additions & 8 deletions maskrcnn_benchmark/engine/inference.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import logging
import time
import os
Expand All @@ -11,17 +10,23 @@
from ..utils.comm import is_main_process
newstzpz marked this conversation as resolved.
Show resolved Hide resolved
from ..utils.comm import all_gather
from ..utils.comm import synchronize
from ..utils.timer import Timer, get_time_str


def compute_on_dataset(model, data_loader, device):
def compute_on_dataset(model, data_loader, device, timer=None):
model.eval()
results_dict = {}
cpu_device = torch.device("cpu")
for i, batch in enumerate(tqdm(data_loader)):
for _, batch in enumerate(tqdm(data_loader)):
images, targets, image_ids = batch
images = images.to(device)
with torch.no_grad():
if timer:
timer.tic()
output = model(images)
if timer:
torch.cuda.synchronize()
timer.toc()
newstzpz marked this conversation as resolved.
Show resolved Hide resolved
output = [o.to(cpu_device) for o in output]
results_dict.update(
{img_id: result for img_id, result in zip(image_ids, output)}
Expand Down Expand Up @@ -72,17 +77,27 @@ def inference(
logger = logging.getLogger("maskrcnn_benchmark.inference")
dataset = data_loader.dataset
logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
start_time = time.time()
predictions = compute_on_dataset(model, data_loader, device)
total_timer = Timer()
inference_timer = Timer()
total_timer.tic()
predictions = compute_on_dataset(model, data_loader, device, inference_timer)
# wait for all processes to complete before measuring the time
synchronize()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
total_time = total_timer.toc()
total_time_str = get_time_str(total_time)
logger.info(
"Total inference time: {} ({} s / img per device, on {} devices)".format(
"Total run time: {} ({} s / img per device, on {} devices)".format(
total_time_str, total_time * num_devices / len(dataset), num_devices
)
)
total_infer_time = get_time_str(inference_timer.total_time)
logger.info(
"Model inference time: {} ({} s / img per device, on {} devices)".format(
total_infer_time,
inference_timer.total_time * num_devices / len(dataset),
num_devices,
)
)

predictions = _accumulate_predictions_from_multiple_gpus(predictions)
if not is_main_process():
Expand Down
7 changes: 0 additions & 7 deletions maskrcnn_benchmark/modeling/backbone/fbnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,13 +199,6 @@ def __init__(
("last", last)
]))

# output_blob = builder.add_final_pool(
# # model, output_blob, kernel_size=cfg.FAST_RCNN.ROI_XFORM_RESOLUTION)
# model,
# output_blob,
# kernel_size=int(cfg.FAST_RCNN.ROI_XFORM_RESOLUTION / stride_init),
# )

self.out_channels = builder.last_depth

def forward(self, x, proposals):
Expand Down
3 changes: 3 additions & 0 deletions maskrcnn_benchmark/modeling/backbone/fbnet_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -771,6 +771,9 @@ def add_last(self, stage_info):
last_channel = int(self.last_depth * (-channel_scale))
last_channel = self._get_divisible_width(last_channel)

if last_channel == 0:
return nn.Sequential()

dim_in = self.last_depth
ret = ConvBNRelu(
dim_in,
Expand Down
Loading