This repository has been archived by the owner on Oct 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #225 from facebookresearch/bugz7
Generative model with start features
- Loading branch information
Showing
7 changed files
with
349 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
54 changes: 54 additions & 0 deletions
54
light/world/souls/models/generative_heuristic_model_with_start_feature_soul.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) Facebook, Inc. and its affiliates. | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
from light.world.souls.models.generative_heuristic_model_soul import GenerativeHeuristicModelSoul | ||
|
||
class GenerativeHeuristicModelWithStartFeatureSoul(GenerativeHeuristicModelSoul): | ||
|
||
def add_startswith_tokens(self, context, dialogue_txt): | ||
# extract partner name | ||
partner_name = "" | ||
if self.target_node._last_interaction_partner_id != None: | ||
partner = self.world.oo_graph.get_node( | ||
self.target_node._last_interaction_partner_id | ||
) | ||
if partner is not None: | ||
partner_name = partner.get_prefix_view() | ||
if len(dialogue_txt) < 3: | ||
feature = "START " + partner_name | ||
else: | ||
feature = "CONTINUE " + partner_name | ||
final = context + dialogue_txt + '\n' + feature | ||
#print(final) | ||
return final | ||
|
||
def build_dialog_context(self, quest_txt=None): | ||
# Initial context. | ||
txt = self.build_context(quest_txt) | ||
# Dialogue/interaction context. | ||
dtxt = "" | ||
agent = self.target_node | ||
agent_id = agent.node_id | ||
turn_id = None | ||
for d in agent._last_interaction_history: | ||
current_turn_id = d[0][0] | ||
if turn_id == None or turn_id == current_turn_id: | ||
dtxt += " " + d[1] | ||
else: | ||
dtxt = dtxt.lstrip(" ") | ||
dtxt += "\n" + d[1] | ||
turn_id = current_turn_id | ||
is_safe = d[0][2] | ||
if not is_safe: | ||
# reset conversation when unsafe utterances are in the history | ||
dtxt = self.build_context(quest_txt) | ||
dtxt = dtxt.lstrip(" ") | ||
|
||
# Add starting context features, can help the model. | ||
final = self.add_startswith_tokens(txt, dtxt) | ||
|
||
return final | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) Facebook, Inc. and its affiliates. | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
""" | ||
Convert a dataset into the ParlAI text format. | ||
## Examples | ||
```shell | ||
parlai convert_data_to_parlai_format -t babi:task1k:1 --outfile /tmp/dump | ||
``` | ||
""" | ||
|
||
from parlai.core.params import ParlaiParser | ||
from parlai.agents.repeat_label.repeat_label import RepeatLabelAgent | ||
from parlai.core.worlds import create_task | ||
from parlai.utils.misc import msg_to_str, TimeLogger | ||
import parlai.utils.logging as logging | ||
from parlai.core.script import ParlaiScript, register_script | ||
import random | ||
import tempfile | ||
import copy | ||
|
||
|
||
def clean(msg): | ||
msg = copy.deepcopy(msg) | ||
txt = msg["text"] | ||
res = [] | ||
app = "" | ||
convo_has_started = False | ||
for t in txt.split("\n"): | ||
if "_self_say " in t: | ||
convo_has_started = True | ||
if "_partner_say " in t: | ||
convo_has_started = True | ||
if "_partner_name " in t: | ||
partner_name = t.replace("_partner_name ", "") | ||
|
||
first_convo_line = True | ||
for t in txt.split("\n"): | ||
if t.startswith("_") and "_object_desc" not in t: | ||
if ( | ||
t.startswith("_self_act") | ||
or t.startswith("_self_emote") | ||
or t.startswith("_partner_act") | ||
or t.startswith("_partner_emote") | ||
): | ||
t = t.replace("_self_act ", "") | ||
t = t.replace("_partner_act ", "") | ||
t = t.replace("_self_emote ", "") | ||
t = t.replace("_partner_emote ", "") | ||
app = app + " *" + t + "*" | ||
else: | ||
#if ("_partner_say " in t) or ("_self_say" in t): | ||
# #import pdb; pdb.set_trace() | ||
if ("_partner_say " in t) or ("_self_say" in t): | ||
first_convo_line = False | ||
t = t.replace("_self_say ", "") | ||
t = t.replace("_partner_say ", "") | ||
res.append(t + app) | ||
app = "" | ||
|
||
if not convo_has_started: | ||
res.append("START " + partner_name) | ||
else: | ||
res.append("CONTINUE " + partner_name) | ||
|
||
msg.force_set("text", "\n".join(res)) | ||
#print(res) | ||
return msg | ||
|
||
|
||
def dump_data(opt): | ||
# create repeat label agent and assign it to the specified task | ||
agent = RepeatLabelAgent(opt) | ||
world = create_task(opt, agent) | ||
opt.log() | ||
ignorefields = opt.get("ignore_fields", "") | ||
if opt["outfile"] is None: | ||
outfile = tempfile.mkstemp( | ||
prefix="{}_{}_".format(opt["task"], opt["datatype"]), suffix=".txt" | ||
)[1] | ||
else: | ||
outfile = opt["outfile"] | ||
|
||
if opt["num_examples"] == -1: | ||
num_examples = world.num_examples() | ||
else: | ||
num_examples = opt["num_examples"] | ||
log_timer = TimeLogger() | ||
|
||
logging.debug("starting to convert...") | ||
logging.info(f"saving output to {outfile}") | ||
fw = open(outfile, "w") | ||
for _ in range(num_examples): | ||
world.parley() | ||
acts = world.get_acts() | ||
value = acts[0].get("labels", acts[0].pop("eval_labels", None)) | ||
acts[0].force_set("labels", value) | ||
|
||
msg = clean(acts[0]) | ||
|
||
txt = msg_to_str(msg, ignore_fields=ignorefields) | ||
fw.write(txt + "\n") | ||
if acts[0].get("episode_done", False): | ||
fw.write("\n") | ||
|
||
if log_timer.time() > opt["log_every_n_secs"]: | ||
text, _log = log_timer.log(world.total_parleys, world.num_examples()) | ||
logging.info(text) | ||
|
||
if world.epoch_done(): | ||
logging.info("epoch done") | ||
break | ||
fw.close() | ||
|
||
|
||
def setup_args(): | ||
# Get command line arguments | ||
parser = ParlaiParser(description="Dump a task to a standardized format") | ||
parser.add_argument( | ||
"-n", | ||
"--num-examples", | ||
default=-1, | ||
type=int, | ||
help="Total number of exs to convert, -1 to convert all examples", | ||
) | ||
parser.add_argument( | ||
"-of", | ||
"--outfile", | ||
default=None, | ||
type=str, | ||
help="Output file where to save, by default will be created in tmp", | ||
) | ||
parser.add_argument( | ||
"-if", | ||
"--ignore-fields", | ||
default="id", | ||
type=str, | ||
help="Ignore these fields from the message (returned with .act() )", | ||
) | ||
parser.add_argument("-ltim", "--log-every-n-secs", type=float, default=2) | ||
parser.set_defaults(datatype="train:stream") | ||
return parser | ||
|
||
|
||
@register_script("convert_to_parlai", hidden=True) | ||
class ConvertDataToParlaiFormat(ParlaiScript): | ||
@classmethod | ||
def setup_args(cls): | ||
return setup_args() | ||
|
||
def run(self): | ||
return dump_data(self.opt) | ||
|
||
|
||
if __name__ == "__main__": | ||
random.seed(42) | ||
ConvertDataToParlaiFormat.main() |
105 changes: 105 additions & 0 deletions
105
projects/dialog_and_act_trainer/train/gen_withstarter_sweep.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# Copyright (c) 2017-present, Facebook, Inc. | ||
# All rights reserved. | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. An additional grant | ||
# of patent rights can be found in the PATENTS file in the same directory. | ||
|
||
|
||
from parlai_internal.projects.param_sweep_utils.param_sweep import run_grid | ||
|
||
SWEEP_NAME = "gen_withstarter" | ||
name_keys = {} | ||
|
||
grid = { | ||
"-t": [ | ||
'"fromfile:fromfile_datapath=/checkpoint/light/projects/dialog_and_act_trainer/light_withstarter_train.txt,fromfile:fromfile_datapath=/checkpoint/light/projects/dialog_and_act_trainer/light_withstarter_wild_train.txt"' | ||
], | ||
"-et": [ | ||
'"fromfile:fromfile_datapath=/checkpoint/light/projects/dialog_and_act_trainer/light_withstarter_wild_valid.txt"', | ||
], | ||
"--max-train-time": [(60 * 60) * 36], | ||
"--model": ["parlai_internal.projects.meena.unlikely.boringul:UnlikelihoodAgent"], | ||
"--eval-skip-generation": [False], | ||
"--validation-max-exs": [200], | ||
"-vp": [1000], | ||
"-vmt": ["boring_fails"], | ||
"-vmm": ["min"], | ||
"--save-after-valid": [True], | ||
"-vtim": [(60 * 60) * 30], | ||
"-stim": [(60) * 60 * 1], | ||
"--inference": ["beam"], | ||
"--beam_min_length": [20], | ||
"--beam_context_block_ngram": [-1], | ||
"--beam_block_ngram": [-1], | ||
"--beam_size": [1], | ||
"--ul-type": ["std0"], | ||
"--seq-ul-nc": [4], | ||
"--seq-ul-nl": [4], | ||
"--seq-ul-ratio": [0.25], | ||
"--train-boring-repeats": [True], | ||
"--train-context-repeats": [False], | ||
"--train-label-repeats": [False], | ||
"--attention-dropout": [0.00], | ||
"--batchsize": ["64"], | ||
"--embedding-size": [2560], | ||
"--ffn-size": [10240], | ||
"--variant": ["prelayernorm"], | ||
"--n-heads": [32], | ||
"--n-positions": [128], | ||
"--n-encoder-layers": [2], | ||
"--n-decoder-layers": [24], | ||
"--history-add-global-end-token": [ | ||
"end", # hack to get newline delimiter | ||
], | ||
"--dict-tokenizer": ["bytelevelbpe"], | ||
"--dict-file": [ | ||
"/checkpoint/parlai/zoo/meena/20200319_meenav0data_tall_2.7B_adamoptimizer/20200319_13.3ppl_200kupdates/model.dict" | ||
], | ||
"--dropout": [0.1], | ||
"--fp16": [True], | ||
"--init-model": [ | ||
# emily's good good | ||
"/checkpoint/parlai/zoo/q_function/generative2.7B_bst_0331/model", | ||
], | ||
"--label-truncate": [128], | ||
"--lr-scheduler": ["reduceonplateau"], | ||
"--lr-scheduler-patience": [3], | ||
"--optimizer": ["adam"], | ||
"--relu-dropout": [0.0], | ||
"--activation": ["gelu"], | ||
"--model-parallel": ["true"], | ||
"--text-truncate": [128], | ||
"--truncate": [128], | ||
"--warmup_updates": [200], | ||
"--fp16-impl": ["mem_efficient"], | ||
"--update-freq": [4], | ||
"--gradient-clip": [0.1], | ||
"--skip-generation": [True], | ||
"--log_every_n_secs": [10], | ||
"-lr": [7e-6], | ||
} | ||
|
||
if __name__ == "__main__": | ||
run_grid( | ||
grid, | ||
name_keys, | ||
SWEEP_NAME, | ||
partition="learnfair", | ||
# partition='dev', | ||
jobtime="24:00:00", | ||
PARLAI_PATH="/private/home/jase/src/ParlAI/", | ||
gpus=8, | ||
nodes=1, | ||
volta=True, | ||
volta32=True, | ||
saveroot="/checkpoint/light/projects/dialog_and_act_trainer/models/" | ||
+ SWEEP_NAME, | ||
include_job_id=True, | ||
create_model_file=True, | ||
hashname=False, | ||
# fixedname='model', | ||
requeue=True, | ||
mem_gb=400, | ||
data_parallel=True, | ||
copy_env=False, | ||
) |
Oops, something went wrong.