forked from awslabs/deequ
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add support for EntityTypes dqdl rule * Add support for Conditional Aggregation Analyzer --------- Co-authored-by: Joshua Zexter <[email protected]>
- Loading branch information
Showing
3 changed files
with
330 additions
and
0 deletions.
There are no files selected for viewing
69 changes: 69 additions & 0 deletions
69
src/main/scala/com/amazon/deequ/analyzers/CustomAggregator.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
/** | ||
* Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not | ||
* use this file except in compliance with the License. A copy of the License | ||
* is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on | ||
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
* express or implied. See the License for the specific language governing | ||
* permissions and limitations under the License. | ||
* | ||
*/ | ||
package com.amazon.deequ.analyzers | ||
|
||
import com.amazon.deequ.metrics.AttributeDoubleMetric | ||
import com.amazon.deequ.metrics.Entity | ||
import org.apache.spark.sql.DataFrame | ||
|
||
import scala.util.Failure | ||
import scala.util.Success | ||
import scala.util.Try | ||
|
||
// Define a custom state to hold aggregation results | ||
case class AggregatedMetricState(counts: Map[String, Int], total: Int) | ||
extends DoubleValuedState[AggregatedMetricState] { | ||
|
||
override def sum(other: AggregatedMetricState): AggregatedMetricState = { | ||
val combinedCounts = counts ++ other | ||
.counts | ||
.map { case (k, v) => k -> (v + counts.getOrElse(k, 0)) } | ||
AggregatedMetricState(combinedCounts, total + other.total) | ||
} | ||
|
||
override def metricValue(): Double = counts.values.sum.toDouble / total | ||
} | ||
|
||
// Define the analyzer | ||
case class CustomAggregator(aggregatorFunc: DataFrame => AggregatedMetricState, | ||
metricName: String, | ||
instance: String = "Dataset") | ||
extends Analyzer[AggregatedMetricState, AttributeDoubleMetric] { | ||
|
||
override def computeStateFrom(data: DataFrame, filterCondition: Option[String] = None) | ||
: Option[AggregatedMetricState] = { | ||
Try(aggregatorFunc(data)) match { | ||
case Success(state) => Some(state) | ||
case Failure(_) => None | ||
} | ||
} | ||
|
||
override def computeMetricFrom(state: Option[AggregatedMetricState]): AttributeDoubleMetric = { | ||
state match { | ||
case Some(detState) => | ||
val metrics = detState.counts.map { case (key, count) => | ||
key -> (count.toDouble / detState.total) | ||
} | ||
AttributeDoubleMetric(Entity.Column, metricName, instance, Success(metrics)) | ||
case None => | ||
AttributeDoubleMetric(Entity.Column, metricName, instance, | ||
Failure(new RuntimeException("Metric computation failed"))) | ||
} | ||
} | ||
|
||
override private[deequ] def toFailureMetric(failure: Exception): AttributeDoubleMetric = { | ||
AttributeDoubleMetric(Entity.Column, metricName, instance, Failure(failure)) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
244 changes: 244 additions & 0 deletions
244
src/test/scala/com/amazon/deequ/analyzers/CustomAggregatorTest.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
/** | ||
* Copyright 2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"). You may not | ||
* use this file except in compliance with the License. A copy of the License | ||
* is located at | ||
* | ||
* http://aws.amazon.com/apache2.0/ | ||
* | ||
* or in the "license" file accompanying this file. This file is distributed on | ||
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
* express or implied. See the License for the specific language governing | ||
* permissions and limitations under the License. | ||
* | ||
*/ | ||
package com.amazon.deequ.analyzers | ||
|
||
import com.amazon.deequ.SparkContextSpec | ||
import com.amazon.deequ.utils.FixtureSupport | ||
import org.scalatest.matchers.should.Matchers | ||
import org.scalatest.wordspec.AnyWordSpec | ||
import com.amazon.deequ.analyzers._ | ||
import com.amazon.deequ.metrics.AttributeDoubleMetric | ||
import com.amazon.deequ.profiles.ColumnProfilerRunner | ||
import com.amazon.deequ.utils.FixtureSupport | ||
import org.apache.spark.sql.SparkSession | ||
import org.apache.spark.sql.functions.{sum, count} | ||
import scala.util.Failure | ||
import scala.util.Success | ||
import org.apache.spark.sql.SparkSession | ||
import org.apache.spark.sql.DataFrame | ||
import com.amazon.deequ.metrics.AttributeDoubleMetric | ||
import com.amazon.deequ.profiles.NumericColumnProfile | ||
|
||
class CustomAggregatorTest | ||
extends AnyWordSpec with Matchers with SparkContextSpec with FixtureSupport { | ||
|
||
"CustomAggregatorTest" should { | ||
|
||
"""Example use: return correct counts | ||
|for product sales in different categories""".stripMargin in withSparkSession | ||
{ session => | ||
val data = getDfWithIdColumn(session) | ||
val mockLambda: DataFrame => AggregatedMetricState = _ => | ||
AggregatedMetricState(Map("ProductA" -> 50, "ProductB" -> 45), 100) | ||
|
||
val analyzer = CustomAggregator(mockLambda, "ProductSales", "category") | ||
|
||
val state = analyzer.computeStateFrom(data) | ||
val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isSuccess shouldBe true | ||
metric.value.get should contain ("ProductA" -> 0.5) | ||
metric.value.get should contain ("ProductB" -> 0.45) | ||
} | ||
|
||
"handle scenarios with no data points effectively" in withSparkSession { session => | ||
val data = getDfWithIdColumn(session) | ||
val mockLambda: DataFrame => AggregatedMetricState = _ => | ||
AggregatedMetricState(Map.empty[String, Int], 100) | ||
|
||
val analyzer = CustomAggregator(mockLambda, "WebsiteTraffic", "page") | ||
|
||
val state = analyzer.computeStateFrom(data) | ||
val metric: AttributeDoubleMetric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isSuccess shouldBe true | ||
metric.value.get shouldBe empty | ||
} | ||
|
||
"return a failure metric when the lambda function fails" in withSparkSession { session => | ||
val data = getDfWithIdColumn(session) | ||
val failingLambda: DataFrame => AggregatedMetricState = | ||
_ => throw new RuntimeException("Test failure") | ||
|
||
val analyzer = CustomAggregator(failingLambda, "ProductSales", "category") | ||
|
||
val state = analyzer.computeStateFrom(data) | ||
val metric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isFailure shouldBe true | ||
metric.value match { | ||
case Success(_) => fail("Should have failed due to lambda function failure") | ||
case Failure(exception) => exception.getMessage shouldBe "Metric computation failed" | ||
} | ||
} | ||
|
||
"return a failure metric if there are no rows in DataFrame" in withSparkSession { session => | ||
val emptyData = session.createDataFrame( | ||
session.sparkContext.emptyRDD[org.apache.spark.sql.Row], | ||
getDfWithIdColumn(session).schema) | ||
val mockLambda: DataFrame => AggregatedMetricState = df => | ||
if (df.isEmpty) throw new RuntimeException("No data to analyze") | ||
else AggregatedMetricState(Map("ProductA" -> 0, "ProductB" -> 0), 0) | ||
|
||
val analyzer = CustomAggregator(mockLambda, | ||
"ProductSales", | ||
"category") | ||
|
||
val state = analyzer.computeStateFrom(emptyData) | ||
val metric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isFailure shouldBe true | ||
metric.value match { | ||
case Success(_) => fail("Should have failed due to no data") | ||
case Failure(exception) => exception.getMessage should include("Metric computation failed") | ||
} | ||
} | ||
} | ||
|
||
"Combined Analysis with CustomAggregator and ColumnProfilerRunner" should { | ||
"provide aggregated data and column profiles" in withSparkSession { session => | ||
import session.implicits._ | ||
|
||
// Define the dataset | ||
val rawData = Seq( | ||
("thingA", "13.0", "IN_TRANSIT", "true"), | ||
("thingA", "5", "DELAYED", "false"), | ||
("thingB", null, "DELAYED", null), | ||
("thingC", null, "IN_TRANSIT", "false"), | ||
("thingD", "1.0", "DELAYED", "true"), | ||
("thingC", "7.0", "UNKNOWN", null), | ||
("thingC", "20", "UNKNOWN", null), | ||
("thingE", "20", "DELAYED", "false") | ||
).toDF("productName", "totalNumber", "status", "valuable") | ||
|
||
val statusCountLambda: DataFrame => AggregatedMetricState = df => | ||
AggregatedMetricState(df.groupBy("status").count().rdd | ||
.map(r => r.getString(0) -> r.getLong(1).toInt).collect().toMap, df.count().toInt) | ||
|
||
val statusAnalyzer = CustomAggregator(statusCountLambda, "ProductStatus") | ||
val statusMetric = statusAnalyzer.computeMetricFrom(statusAnalyzer.computeStateFrom(rawData)) | ||
|
||
val result = ColumnProfilerRunner().onData(rawData).run() | ||
|
||
statusMetric.value.isSuccess shouldBe true | ||
statusMetric.value.get("IN_TRANSIT") shouldBe 0.25 | ||
statusMetric.value.get("DELAYED") shouldBe 0.5 | ||
|
||
val totalNumberProfile = result.profiles("totalNumber").asInstanceOf[NumericColumnProfile] | ||
totalNumberProfile.completeness shouldBe 0.75 | ||
totalNumberProfile.dataType shouldBe DataTypeInstances.Fractional | ||
|
||
result.profiles.foreach { case (colName, profile) => | ||
println(s"Column '$colName': completeness: ${profile.completeness}, " + | ||
s"approximate number of distinct values: ${profile.approximateNumDistinctValues}") | ||
} | ||
} | ||
} | ||
|
||
"accurately compute percentage occurrences and total engagements for content types" in withSparkSession { session => | ||
val data = getContentEngagementDataFrame(session) | ||
val contentEngagementLambda: DataFrame => AggregatedMetricState = df => { | ||
|
||
// Calculate the total engagements for each content type | ||
val counts = df | ||
.groupBy("content_type") | ||
.agg( | ||
(sum("views") + sum("likes") + sum("shares")).cast("int").alias("totalEngagements") | ||
) | ||
.collect() | ||
.map(row => | ||
row.getString(0) -> row.getInt(1) | ||
) | ||
.toMap | ||
val totalEngagements = counts.values.sum | ||
AggregatedMetricState(counts, totalEngagements) | ||
} | ||
|
||
val analyzer = CustomAggregator(contentEngagementLambda, "ContentEngagement", "AllTypes") | ||
|
||
val state = analyzer.computeStateFrom(data) | ||
val metric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isSuccess shouldBe true | ||
// Counts: Map(Video -> 5300, Article -> 1170) | ||
// total engagement: 6470 | ||
(metric.value.get("Video") * 100).toInt shouldBe 81 | ||
(metric.value.get("Article") * 100).toInt shouldBe 18 | ||
println(metric.value.get) | ||
} | ||
|
||
"accurately compute total aggregated resources for cloud services" in withSparkSession { session => | ||
val data = getResourceUtilizationDataFrame(session) | ||
val resourceUtilizationLambda: DataFrame => AggregatedMetricState = df => { | ||
val counts = df.groupBy("service_type") | ||
.agg( | ||
(sum("cpu_hours") + sum("memory_gbs") + sum("storage_gbs")).cast("int").alias("totalResources") | ||
) | ||
.collect() | ||
.map(row => | ||
row.getString(0) -> row.getInt(1) | ||
) | ||
.toMap | ||
val totalResources = counts.values.sum | ||
AggregatedMetricState(counts, totalResources) | ||
} | ||
val analyzer = CustomAggregator(resourceUtilizationLambda, "ResourceUtilization", "CloudServices") | ||
|
||
val state = analyzer.computeStateFrom(data) | ||
val metric = analyzer.computeMetricFrom(state) | ||
|
||
metric.value.isSuccess shouldBe true | ||
println("Resource Utilization Metrics: " + metric.value.get) | ||
// Resource Utilization Metrics: Map(Compute -> 0.5076142131979695, | ||
// Database -> 0.27918781725888325, | ||
// Storage -> 0.2131979695431472) | ||
(metric.value.get("Compute") * 100).toInt shouldBe 50 // Expected percentage for Compute | ||
(metric.value.get("Database") * 100).toInt shouldBe 27 // Expected percentage for Database | ||
(metric.value.get("Storage") * 100).toInt shouldBe 21 // 430 CPU + 175 Memory + 140 Storage from mock data | ||
} | ||
|
||
def getDfWithIdColumn(session: SparkSession): DataFrame = { | ||
import session.implicits._ | ||
Seq( | ||
("ProductA", "North"), | ||
("ProductA", "South"), | ||
("ProductB", "East"), | ||
("ProductA", "West") | ||
).toDF("product", "region") | ||
} | ||
|
||
def getContentEngagementDataFrame(session: SparkSession): DataFrame = { | ||
import session.implicits._ | ||
Seq( | ||
("Video", 1000, 150, 300), | ||
("Article", 500, 100, 150), | ||
("Video", 1500, 200, 450), | ||
("Article", 300, 50, 70), | ||
("Video", 1200, 180, 320) | ||
).toDF("content_type", "views", "likes", "shares") | ||
} | ||
|
||
def getResourceUtilizationDataFrame(session: SparkSession): DataFrame = { | ||
import session.implicits._ | ||
Seq( | ||
("Compute", 400, 120, 150), | ||
("Storage", 100, 30, 500), | ||
("Database", 200, 80, 100), | ||
("Compute", 450, 130, 250), | ||
("Database", 230, 95, 120) | ||
).toDF("service_type", "cpu_hours", "memory_gbs", "storage_gbs") | ||
} | ||
} |