Support 'memory zones' for user memory management #13621
Merged
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Add a context manage nlp.memory_zone(), which will begin
memory_zone() blocks on the vocab, string store, and potentially
other components.
Example usage:
Once the memory_zone() block expires, spaCy will free any shared
resources that were allocated for the text-processing that occurred
within the memory_zone. If you create Doc objects within a memory
zone, it's invalid to access them once the memory zone is expired.
The purpose of this is that spaCy creates and stores Lexeme objects
in the Vocab that can be shared between multiple Doc objects. It also
interns strings. Normally, spaCy can't know when all Doc objects using
a Lexeme are out-of-scope, so new Lexemes accumulate in the vocab,
causing memory pressure.
Memory zones solve this problem by telling spaCy "okay none of the
documents allocated within this block will be accessed again". This
lets spaCy free all new Lexeme objects and other data that were
created during the block.
The mechanism is general, so memory_zone() context managers can be
added to other components that could benefit from them, e.g. pipeline
components.
I experimented with adding memory zone support to the tokenizer as well,
for its cache. However, this seems unnecessarily complicated. It makes
more sense to just stick a limit on the cache size. This lets spaCy
benefit from the efficiency advantage of the cache better, because
we can maintain a (bounded) cache even if only small batches of
documents are being processed.