Skip to content

eternaldolphin/lvis-debug

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LVIS-DEBUG

improvement for simplicity of debug

  1. fix a bug in eval.py: dtype=np.float -> np.float64(for numpy>1.20.0)
  2. only eval part of dataset to save time with img_ids

LVIS API

LVIS (pronounced ‘el-vis’): is a new dataset for Large Vocabulary Instance Segmentation. When complete, it will feature more than 2 million high-quality instance segmentation masks for over 1200 entry-level object categories in 164k images. The LVIS API enables reading and interacting with annotation files, visualizing annotations, and evaluating results.

LVIS v1.0

For this release, we have annotated 159,623 images (100k train, 20k val, 20k test-dev, 20k test-challenge). Release v1.0 is publicly available at LVIS website and will be used in the second LVIS Challenge to be held at Joint COCO and LVIS Workshop at ECCV 2020.

Setup

You can setup a virtual environment and then install lvisapi using pip:

python3 -m venv env               # Create a virtual environment
source env/bin/activate           # Activate virtual environment

# install COCO API. COCO API requires numpy to install. Ensure that you installed numpy.
pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
# install LVIS API
pip install lvis
# Work for a while ...
deactivate  # Exit virtual environment

You can also clone the repo first and then do the following steps inside the repo:

python3 -m venv env               # Create a virtual environment
source env/bin/activate           # Activate virtual environment

# install COCO API. COCO API requires numpy to install. Ensure that you installed numpy.
pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
# install LVIS API
pip install .
# test if the installation was correct
python test.py
# Work for a while ...
deactivate  # Exit virtual environment

Citing LVIS

If you find this code/data useful in your research then please cite our paper:

@inproceedings{gupta2019lvis,
  title={{LVIS}: A Dataset for Large Vocabulary Instance Segmentation},
  author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
  booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

Credit

The code is a re-write of PythonAPI for COCO. The core functionality is the same with LVIS specific changes.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages