Skip to content

Commit

Permalink
Add gradio chatbot for openai webserver (vllm-project#2307)
Browse files Browse the repository at this point in the history
  • Loading branch information
arkohut authored Jan 12, 2024
1 parent f745847 commit 9746058
Showing 1 changed file with 81 additions and 0 deletions.
81 changes: 81 additions & 0 deletions examples/gradio_openai_chatbot_webserver.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import argparse
from openai import OpenAI
import gradio as gr

# Argument parser setup
parser = argparse.ArgumentParser(
description='Chatbot Interface with Customizable Parameters')
parser.add_argument('--model-url',
type=str,
default='http://localhost:8000/v1',
help='Model URL')
parser.add_argument('-m',
'--model',
type=str,
required=True,
help='Model name for the chatbot')
parser.add_argument('--temp',
type=float,
default=0.8,
help='Temperature for text generation')
parser.add_argument('--stop-token-ids',
type=str,
default='',
help='Comma-separated stop token IDs')
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=8001)

# Parse the arguments
args = parser.parse_args()

# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = args.model_url

# Create an OpenAI client to interact with the API server
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)


def predict(message, history):
# Convert chat history to OpenAI format
history_openai_format = [{
"role": "system",
"content": "You are a great ai assistant."
}]
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({
"role": "assistant",
"content": assistant
})
history_openai_format.append({"role": "user", "content": message})

# Create a chat completion request and send it to the API server
stream = client.chat.completions.create(
model=args.model, # Model name to use
messages=history_openai_format, # Chat history
temperature=args.temp, # Temperature for text generation
stream=True, # Stream response
extra_body={
'repetition_penalty':
1,
'stop_token_ids': [
int(id.strip()) for id in args.stop_token_ids.split(',')
if id.strip()
] if args.stop_token_ids else []
})

# Read and return generated text from response stream
partial_message = ""
for chunk in stream:
partial_message += (chunk.choices[0].delta.content or "")
yield partial_message


# Create and launch a chat interface with Gradio
gr.ChatInterface(predict).queue().launch(server_name=args.host,
server_port=args.port,
share=True)

0 comments on commit 9746058

Please sign in to comment.