forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
497 additions
and
14 deletions.
There are no files selected for viewing
101 changes: 101 additions & 0 deletions
101
src/plugins/intel_cpu/src/nodes/executors/acl/acl_gemm.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
// Copyright (C) 2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#include "acl_gemm.hpp" | ||
|
||
#include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h" | ||
|
||
#include "nodes/executors/executor.hpp" | ||
#include "nodes/executors/memory_arguments.hpp" | ||
#include "utils/debug_capabilities.h" | ||
#include "nodes/executors/debug_messages.hpp" | ||
#include "nodes/executors/implementation_utils.hpp" | ||
|
||
namespace ov { | ||
namespace intel_cpu { | ||
|
||
ACLGEMMExecutor::ACLGEMMExecutor(const GEMMAttrs &attrs, | ||
const PostOps &postOps, | ||
const MemoryArgs &memory, | ||
const ExecutorContext::CPtr context) { | ||
aclTensorAttrs.hasLayoutTypeNHWC = memory.at(ARG_SRC)->getDescPtr()->hasLayoutType(LayoutType::nspc); | ||
OPENVINO_ASSERT(!attrs.transpose_a && !attrs.transpose_b, "not supported"); | ||
} | ||
|
||
bool ACLGEMMExecutor::supports(const GEMMConfig &config) { | ||
// TODO: check weights layout | ||
const auto attrs = static_cast<GEMMAttrs>(config.attrs); | ||
if (attrs.transpose_a || attrs.transpose_b) { | ||
return false; | ||
} | ||
if (std::any_of( | ||
attrs.dequantizationScales.begin(), | ||
attrs.dequantizationScales.end(), | ||
[](float value) { return value != 1.f;})) { | ||
return false; | ||
} | ||
|
||
const auto src1_dims = std::dynamic_pointer_cast<BlockedMemoryDesc>(config.descs.at(ARG_SRC))->getBlockDims(); | ||
const auto src2_dims = std::dynamic_pointer_cast<BlockedMemoryDesc>(config.descs.at(ARG_WEI))->getBlockDims(); | ||
|
||
const auto precision = srcType(config); | ||
VERIFY(one_of(precision, ov::element::i8, ov::element::u8), UNSUPPORTED_SRC_PRECISIONS); | ||
VERIFY(postOpsNumbers(config) == 0, UNSUPPORTED_NUMBER_OF_POSTOPS); | ||
VERIFY(one_of(srcRank(config), 2U, 3U, 4U), UNSUPPORTED_SRC_RANK); | ||
VERIFY(one_of(weiRank(config), 2U, 3U, 4U), UNSUPPORTED_WEI_RANK); | ||
VERIFY(static_cast<GEMMAttrs>(config.attrs).dequantizationScales.size() <= 1, UNSUPPORTED_PER_CHANNEL_QUANTIZATION); | ||
return true; | ||
} | ||
|
||
void ACLGEMMExecutor::updateTensorsShapes(ACLShapes& aclMemoryShapes) { | ||
// std::swap(aclMemoryShapes[ACLArgs::ACL_SRC_0][0], aclMemoryShapes[ACLArgs::ACL_SRC_0][1]); | ||
// std::swap(aclMemoryShapes[ACLArgs::ACL_WEI][0], aclMemoryShapes[ACLArgs::ACL_WEI][1]); | ||
// std::swap(aclMemoryShapes[ACLArgs::ACL_DST][0], aclMemoryShapes[ACLArgs::ACL_DST][1]); | ||
} | ||
|
||
arm_compute::Status ACLGEMMExecutor::validateTensorsInfo(const ACLInfos & aclMemoryInfos) { | ||
const auto matMulValid = arm_compute::NEGEMMLowpMatrixMultiplyCore::validate( | ||
aclMemoryInfos[ACLArgs::ACL_SRC_0].get(), | ||
aclMemoryInfos[ACLArgs::ACL_WEI].get(), | ||
nullptr, //aclMemoryInfos[ACLArgs::ACL_BIAS].get(), | ||
aclMemoryInfos[ACLArgs::ACL_DST].get(), | ||
gemmInfo); | ||
return matMulValid; | ||
} | ||
|
||
ACLFunction ACLGEMMExecutor::configureFunction(const ACLTensors & aclMemoryTensors) { | ||
auto gemm = std::make_unique<arm_compute::NEGEMMLowpMatrixMultiplyCore>(); | ||
gemm->configure( | ||
aclMemoryTensors[ACLArgs::ACL_SRC_0].get(), | ||
aclMemoryTensors[ACLArgs::ACL_WEI].get(), | ||
nullptr, //aclMemoryTensors[ACLArgs::ACL_BIAS].get(), | ||
aclMemoryTensors.at(ACLArgs::ACL_DST).get(), | ||
gemmInfo); | ||
return gemm; | ||
} | ||
|
||
std::shared_ptr<arm_compute::TensorInfo> ACLGEMMExecutor::initTensorInfo(const arm_compute::TensorShape& tensorShape, | ||
const arm_compute::DataType& dataType, | ||
const arm_compute::DataLayout& dataLayout) { | ||
arm_compute::DataType result; | ||
switch (dataType) { | ||
case arm_compute::DataType::S8: { | ||
result = arm_compute::DataType::QASYMM8_SIGNED; | ||
break; | ||
} | ||
case arm_compute::DataType::U8: { | ||
result = arm_compute::DataType::QASYMM8; | ||
break; | ||
} | ||
default: { | ||
result = dataType; | ||
break; | ||
} | ||
} | ||
|
||
return ACLCommonExecutor::initTensorInfo(tensorShape, result, dataLayout); | ||
} | ||
|
||
} // namespace intel_cpu | ||
} // namespace ov |
46 changes: 46 additions & 0 deletions
46
src/plugins/intel_cpu/src/nodes/executors/acl/acl_gemm.hpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
// Copyright (C) 2018-2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#pragma once | ||
|
||
#include "acl_common_executor.hpp" | ||
#include "nodes/executors/gemm_config.hpp" | ||
|
||
namespace ov { | ||
namespace intel_cpu { | ||
|
||
class ACLGEMMExecutor : public ACLCommonExecutor { | ||
public: | ||
ACLGEMMExecutor(const GEMMAttrs& attrs, | ||
const PostOps& postOps, | ||
const MemoryArgs& memory, | ||
const ExecutorContext::CPtr context); | ||
|
||
static bool supports(const GEMMConfig& config); | ||
|
||
void updateTensorsShapes(ACLShapes& aclMemoryShapes) override; | ||
|
||
arm_compute::Status validateTensorsInfo(const ACLInfos & aclMemoryInfos) override; | ||
|
||
ACLFunction configureFunction(const ACLTensors & aclMemoryTensors) override; | ||
|
||
impl_desc_type implType() const override { | ||
return impl_desc_type::gemm_acl; | ||
} | ||
|
||
protected: | ||
std::shared_ptr<arm_compute::TensorInfo> initTensorInfo(const arm_compute::TensorShape& tensorShape, | ||
const arm_compute::DataType& dataType, | ||
const arm_compute::DataLayout& dataLayout) override; | ||
|
||
private: | ||
arm_compute::FullyConnectedLayerInfo fullyConnectedLayerInfo; | ||
arm_compute::GEMMInfo gemmInfo; | ||
arm_compute::WeightsInfo weightsInfo; | ||
}; | ||
|
||
using ACLGEMMExecutorPtr = std::shared_ptr<ACLGEMMExecutor>; | ||
|
||
} // namespace intel_cpu | ||
} // namespace ov |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
// Copyright (C) 2023 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#pragma once | ||
|
||
#include <vector> | ||
|
||
#include "cpu_memory.h" | ||
#include "executor_config.hpp" | ||
|
||
namespace ov { | ||
namespace intel_cpu { | ||
|
||
struct GEMMAttrs { | ||
bool withBias = false; | ||
bool transpose_a = false; | ||
bool transpose_b = false; | ||
bool sparseWeights = false; | ||
std::vector<float> dequantizationScales; | ||
ov::intel_cpu::Config::ModelType modelType = ov::intel_cpu::Config::ModelType::Unknown; | ||
}; | ||
|
||
} // namespace intel_cpu | ||
} // namespace ov |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
// Copyright (C) 2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#pragma once | ||
|
||
#include "executor_config.hpp" | ||
#include "gemm_attrs.hpp" | ||
|
||
namespace ov { | ||
namespace intel_cpu { | ||
using GEMMConfig = ov::intel_cpu::executor::Config<GEMMAttrs>; | ||
} // namespace intel_cpu | ||
} // namespace ov |
179 changes: 179 additions & 0 deletions
179
src/plugins/intel_cpu/src/nodes/executors/gemm_implementations.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
// Copyright (C) 2018-2022 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#include <memory> | ||
#include <vector> | ||
|
||
#include "cpu/x64/cpu_isa_traits.hpp" | ||
#include "debug_messages.hpp" | ||
#include "implementation_utils.hpp" | ||
#include "memory_desc/cpu_memory_desc.h" | ||
#include "nodes/executors/gemm_config.hpp" | ||
#include "nodes/executors/dnnl/dnnl_convolution_primitive.hpp" | ||
#include "nodes/executors/dnnl/dnnl_fullyconnected.hpp" | ||
#include "nodes/executors/dnnl/dnnl_shape_agnostic_data.hpp" | ||
#include "nodes/executors/executor.hpp" | ||
#include "nodes/executors/executor_implementation.hpp" | ||
#include "nodes/executors/implementations.hpp" | ||
#include "nodes/executors/memory_arguments.hpp" | ||
#include "nodes/executors/precision_matcher.hpp" | ||
#include "nodes/executors/precision_translation.hpp" | ||
#include "nodes/executors/type_mask.hpp" | ||
#include "openvino/core/type/element_type.hpp" | ||
#include "ov_optional.hpp" | ||
#include "utils/cpp/maybe_unused.hpp" | ||
|
||
#if defined(OV_CPU_WITH_ACL) | ||
#include "nodes/executors/acl/acl_fullyconnected.hpp" | ||
#include "nodes/executors/acl/acl_gemm.hpp" | ||
#endif | ||
|
||
namespace ov { | ||
namespace intel_cpu { | ||
|
||
using namespace ov::element; | ||
using namespace TypeMaskAlias; | ||
using namespace executor; | ||
|
||
static const MappingNotation dnnlFCMappingNotation{ARG_SRC, ARG_WEI, ARG_BIAS, ARG_DST}; | ||
|
||
using LayoutConfig = std::vector<LayoutType>; | ||
static const LayoutConfig dnnlFCLayoutConfig{LayoutType::ncsp, LayoutType::ncsp, LayoutType::ncsp, LayoutType::ncsp}; | ||
static const LayoutConfig aclFCLayoutConfig{LayoutType::ncsp, LayoutType::ncsp, LayoutType::ncsp, LayoutType::ncsp}; | ||
static const LayoutConfig aclMatMulLayoutConfig{LayoutType::ncsp, LayoutType::ncsp, LayoutType::ncsp, LayoutType::ncsp}; | ||
|
||
template<dnnl::impl::cpu::x64::cpu_isa_t ISA> | ||
struct Require { | ||
bool operator()() { | ||
return dnnl::impl::cpu::x64::mayiuse(ISA); | ||
} | ||
}; | ||
|
||
static const TypeMapping aclMatMulTypeMapping { | ||
// {src, wei, bia, dst} pt<src, wei, bias, dst> | ||
{{_i8, _i8, _any, _any}, pt(just<i8>(), just<i8>(), just<i32>(), just<i32>())}, | ||
{{_u8, _u8, _any, _any}, pt(just<u8>(), just<u8>(), just<i32>(), just<i32>())}, | ||
{{_any, _any, _any, _any}, pt(just<f32>(), just<f32>(), just<f32>(), just<f32>())} | ||
}; | ||
|
||
static const MappingNotation aclMatMulMappingNotation { | ||
ARG_SRC, ARG_WEI, ARG_BIAS, ARG_DST | ||
}; | ||
|
||
// clang-format on | ||
|
||
static bool fullyMatchConfiguration(const MemoryDescArgs& currentDescriptors, | ||
const InOutTypes& typeConfig, | ||
const LayoutConfig& layoutConfig, | ||
const MappingNotation& notation) { | ||
for (size_t i = 0; i < typeConfig.size(); i++) { | ||
const auto& type = typeConfig[i]; | ||
const auto& desc = currentDescriptors.at(notation[i]); | ||
|
||
if (desc->empty()) | ||
continue; | ||
|
||
if (desc->getPrecision() != type) | ||
return false; // type mismatch | ||
|
||
if (!desc->hasLayoutType(layoutConfig[i])) | ||
return false; // layout mismatch | ||
} | ||
|
||
return true; | ||
} | ||
|
||
static MemoryDescArgs createOptimalDescriptors(const MemoryDescArgs& currentDescriptors, | ||
const InOutTypes& typeConfig, | ||
const LayoutConfig& layoutConfig, | ||
const MappingNotation& notation) { | ||
MemoryDescArgs descs = currentDescriptors; | ||
|
||
const auto& creatorsMap = BlockedDescCreator::getCommonCreators(); | ||
for (size_t i = 0; i < typeConfig.size(); i++) { | ||
const auto& desc = currentDescriptors.at(notation[i]); | ||
const auto& descType = desc->getPrecision(); | ||
const auto& type = typeConfig[i]; | ||
const auto& layout = layoutConfig[i]; | ||
|
||
if (desc->empty()) | ||
continue; | ||
|
||
if (descType == type && desc->hasLayoutType(layout)) { | ||
continue; | ||
} | ||
|
||
descs[notation[i]] = creatorsMap.at(layout)->createSharedDesc(type, desc->getShape()); | ||
} | ||
|
||
return descs; | ||
} | ||
|
||
template <typename Attrs> | ||
ov::optional<executor::Config<Attrs>> requiresFallbackCommon(const executor::Config<Attrs>& config, | ||
const TypeMapping& typeMapping, | ||
const LayoutConfig& layoutConfig, | ||
const MappingNotation& notation) { | ||
const auto typeConfig = getTypeConfiguration(config.descs, typeMapping, notation); | ||
|
||
if (fullyMatchConfiguration(config.descs, typeConfig, layoutConfig, notation)) { | ||
return {}; | ||
} | ||
|
||
const auto optimalDescriptors = createOptimalDescriptors(config.descs, typeConfig, layoutConfig, notation); | ||
|
||
return ov::optional<executor::Config<Attrs>>(GEMMConfig{optimalDescriptors, config.attrs, config.postOps}); | ||
} | ||
|
||
OV_CPU_MAYBE_UNUSED_FUNCTION static inline bool noWeightsDecompression(const GEMMConfig& config) { | ||
return !DnnlFCPrimitive::useWeightsDecompressionImpl(srcType(config), weiType(config), config.attrs.modelType); | ||
} | ||
|
||
OV_CPU_MAYBE_UNUSED_FUNCTION static inline bool noSparseDecompression(const GEMMConfig& config) { | ||
return !(config.attrs.sparseWeights); | ||
} | ||
|
||
OV_CPU_MAYBE_UNUSED_FUNCTION static inline bool noPostOps(const FCConfig& config) { | ||
return config.postOps.empty(); | ||
} | ||
|
||
template <> | ||
const std::vector<ExecutorImplementation<GEMMAttrs>>& getImplementations() { | ||
static const std::vector<ExecutorImplementation<GEMMAttrs>> gemmImplementations { | ||
OV_CPU_INSTANCE_ACL( | ||
"matmul_acl", | ||
ExecutorType::Acl, | ||
OperationType::MatMul, | ||
ShapeTolerance::Agnostic, | ||
// supports | ||
[](const GEMMConfig& config) -> bool { | ||
VERIFY(noSparseDecompression(config), UNSUPPORTED_SPARSE_WEIGHTS); | ||
VERIFY(noWeightsDecompression(config), UNSUPPORTED_WEIGHTS_DECOMPRESSION); | ||
return ACLGEMMExecutor::supports(config); | ||
}, | ||
// requiresFallback | ||
[](const GEMMConfig& config) -> ov::optional<executor::Config<GEMMAttrs>> { | ||
return requiresFallbackCommon(config, | ||
aclMatMulTypeMapping, | ||
aclMatMulLayoutConfig, | ||
aclMatMulMappingNotation); | ||
}, | ||
// acceptsShapes | ||
[](const MemoryArgs& memory) -> bool { | ||
// @todo create syntactic sugar (functor) for shape agnostic lambda | ||
return true; | ||
}, | ||
// create | ||
[](const GEMMAttrs& attrs, | ||
const PostOps& postOps, | ||
const MemoryArgs& memory, | ||
const ExecutorContext::CPtr context) { | ||
return std::make_shared<ACLGEMMExecutor>(attrs, postOps, memory, context); | ||
}) | ||
}; | ||
|
||
return gemmImplementations; | ||
} | ||
} // namespace intel_cpu | ||
} // namespace ov |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.