forked from shubhamchandak94/stabilizer_code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
logical_vs_physical_error_rates.py
119 lines (91 loc) · 4.56 KB
/
logical_vs_physical_error_rates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy as np
from pyquil import Program
from pyquil.gates import MEASURE, I, CNOT, X, H, Z, RZ, RY
import sys
from pyquil.api import QVMConnection
from pyquil.quil import DefGate
import basic_tests
import stabilizer_code
import stabilizer_check_matrices
import noise_models_kraus
import matplotlib.pyplot as plt
# The goal of this program is to create a function that takes as input
# 1. A stabilizer code (described via its stabilizers)
# 2. A parametrized noise model (the parameter corresponds to the physical error rate)
# and output a plot of the logical vs physical error rates achieved
# If init_state_mode = 0, initial state for the test is randomly |0> or |1> uniformly
# If init_state_mode = 1, initial state for the test is uniformly random on Bloch sphere
def GiveLogicalErrRate(code_name,noise_model_kraus,num_trials_tot,code,init_state_mode):
logical_err_rate = 0.0
#print(code.encoding_program)
#print(code.decoding_program)
for trial_id in range(num_trials_tot):
initial_state_prep = Program()
inverse_initial_state_prep = Program()
for qubit_id in range(code.k):
if init_state_mode==0:
bit = np.random.randint(2)
if bit==1:
initial_state_prep += X(qubit_id)
inverse_initial_state_prep += X(qubit_id)
else:
z_angle = (2*np.pi*np.random.rand(1))
y_angle = (1*np.pi*np.random.rand(1))
initial_state_prep += RZ(z_angle[0],qubit_id)
initial_state_prep += RY(y_angle[0],qubit_id)
inverse_initial_state_prep += RY(-y_angle[0],qubit_id)
inverse_initial_state_prep += RZ(-z_angle[0],qubit_id)
# Don't use I gate anywher else in program
error_prog = Program()
for qubit_id in range(code.n):
error_prog += Program(I(qubit_id))
kraus_ops = noise_model_kraus
error_defn = Program()
for qubit_id in range(code.n):
error_defn.define_noisy_gate('I', [qubit_id], kraus_ops)
error_prog = error_defn + error_prog
num_errors = basic_tests.test_general(code, initial_state_prep, error_prog, 1, inverse_initial_state_prep)
logical_err_rate += num_errors
logical_err_rate = logical_err_rate/num_trials_tot
print(code_name,logical_err_rate)
return logical_err_rate
# If init_state_mode = 0, initial state for the test is randomly |0> or |1> uniformly
# If init_state_mode = 1, initial state for the test is uniformly random on Bloch sphere
# num_trials_tot is the number of trials / shots for a given (noise, code, parameter) triple
# code_name_list is a list of all the codes this function will create plots for
# noise_model_list is a list of all the noise models this function will create plots for
# To see what codes are already implemented supported, check stabilizer_check_matrices.py
# To see what noise models are already implemented, check noise_models_kraus.py
# It is also possible to write your own code or noise model, by following the formats in the two files above.
def MakeLogicalErrRatePlots(init_state_mode,num_trials_tot,code_name_list,noise_model_list):
for j in range(len(noise_model_list)):
fig = plt.figure()
for code_name in code_name_list:
code = stabilizer_code.StabilizerCode(stabilizer_check_matrices.mat_dict[code_name])
channel_param_vec = np.linspace(0,1,11)
logical_err_rate_vec = np.zeros(len(channel_param_vec))
for i in range(len(channel_param_vec)):
noise_model_kraus = ((noise_model_list[j])[1])(channel_param_vec[i])
logical_err_rate_vec[i] = GiveLogicalErrRate(code_name,noise_model_kraus,num_trials_tot,code,init_state_mode)
plt.plot(channel_param_vec,logical_err_rate_vec,label=code_name)
plt.ylabel('Logical Error Rate')
plt.xlabel((noise_model_list[j])[0]+' probability')
plt.title('Logical Error Rates for various codes with '+(noise_model_list[j])[0]+' noise')
plt.legend(loc='upper left')
plt.savefig((noise_model_list[j])[0]+'.png',dpi=fig.dpi)
def main():
# An example code_name_list
code_name_list = ["bit_flip_code","phase_flip_code","steane_code","five_qubit_code"]
# An example noise_model_list
noise_model_list = [["amplitude damping",noise_models_kraus.damping_kraus_map],
["dephasing",noise_models_kraus.dephasing_kraus_map],
["bit flip",noise_models_kraus.bit_flip_channel],
["phase flip",noise_models_kraus.phase_flip_channel],
["depolarizing",noise_models_kraus.depolarizing_channel]]
num_trials_tot = 500
# If init_state_mode = 0, initial state for the test is randomly |0> or |1> uniformly
# If init_state_mode = 1, initial state for the test is uniformly random on Bloch sphere
init_state_mode = 0
MakeLogicalErrRatePlots(init_state_mode,num_trials_tot,code_name_list,noise_model_list)
if __name__ == "__main__":
main()