forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
kvstore.row_sparse_pull for GPU and end-to-end benchmark: CPU vs. multi-GPUs #150
Merged
eric-haibin-lin
merged 11 commits into
eric-haibin-lin:sparse
from
reminisce:benchmark_sparse_cpu_gpu
Aug 15, 2017
Merged
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
36f8a71
Add gpu support for BroadcastRowSparse
reminisce f68071c
Fix bugs
reminisce 26ef446
Add benchmark script
reminisce c0c40ce
Increase output dim size
reminisce 200a3f7
Update weight on CPU using single GPU for sparse tensors
reminisce 5cf2027
More fix
reminisce eefec0b
Optimize sparse_retain for special case
reminisce 908e245
Change row sparse pull locations
reminisce 69b5a33
Avoid sparse retain on cpu if possible
reminisce c55713d
Use acc for metric
reminisce c88ed85
Fix misc
reminisce File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
from mxnet.test_utils import * | ||
import time | ||
import argparse | ||
import os | ||
|
||
parser = argparse.ArgumentParser(description="Run sparse linear regression " \ | ||
"with distributed kvstore", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument('--profiler', type=int, default=0, | ||
help='whether to use profiler') | ||
parser.add_argument('--num-epoch', type=int, default=1, | ||
help='number of epochs to train') | ||
parser.add_argument('--batch-size', type=int, default=512, | ||
help='number of examples per batch') | ||
parser.add_argument('--num-batch', type=int, default=99999999, | ||
help='number of batches per epoch') | ||
parser.add_argument('--dummy-iter', type=int, default=0, | ||
help='whether to use dummy iterator to exclude io cost') | ||
parser.add_argument('--kvstore', type=str, default='local', | ||
help='what kvstore to use [local, dist_sync, etc]') | ||
parser.add_argument('--log-level', type=str, default='debug', | ||
help='logging level [debug, info, error]') | ||
parser.add_argument('--dataset', type=str, default='avazu', | ||
help='what test dataset to use') | ||
parser.add_argument('--num-gpu', type=int, default=0, | ||
help='number of gpus to use. 0 means using cpu(0);' | ||
'otherwise, use gpu(0),...,gpu(num_gpu-1)') | ||
parser.add_argument('--output-dim', type=int, default=4, | ||
help='number of columns of the forward output') | ||
|
||
|
||
def get_libsvm_data(data_dir, data_name, url, data_origin_name): | ||
if not os.path.isdir(data_dir): | ||
os.system("mkdir " + data_dir) | ||
os.chdir(data_dir) | ||
if (not os.path.exists(data_name)): | ||
import urllib | ||
zippath = os.path.join(data_dir, data_origin_name) | ||
urllib.urlretrieve(url, zippath) | ||
os.system("bzip2 -d %r" % data_origin_name) | ||
os.chdir("..") | ||
|
||
|
||
class DummyIter(mx.io.DataIter): | ||
"A dummy iterator that always return the same batch, used for speed testing" | ||
def __init__(self, real_iter): | ||
super(DummyIter, self).__init__() | ||
self.real_iter = real_iter | ||
self.provide_data = real_iter.provide_data | ||
self.provide_label = real_iter.provide_label | ||
self.batch_size = real_iter.batch_size | ||
|
||
for batch in real_iter: | ||
self.the_batch = batch | ||
break | ||
|
||
def __iter__(self): | ||
return self | ||
|
||
def next(self): | ||
return self.the_batch | ||
|
||
# testing dataset sources | ||
avazu = { | ||
'data_name': 'avazu-app.t', | ||
'data_origin_name': 'avazu-app.t.bz2', | ||
'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/avazu-app.t.bz2", | ||
'feature_dim': 1000000, | ||
} | ||
|
||
kdda = { | ||
'data_name': 'kdda.t', | ||
'data_origin_name': 'kdda.t.bz2', | ||
'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdda.t.bz2", | ||
'feature_dim': 20216830, | ||
} | ||
|
||
datasets = { 'kdda' : kdda, 'avazu' : avazu } | ||
|
||
|
||
def get_sym(feature_dim): | ||
x = mx.symbol.Variable("data", stype='csr') | ||
norm_init = mx.initializer.Normal(sigma=0.01) | ||
w = mx.symbol.Variable("w", shape=(feature_dim, args.output_dim), init=norm_init, stype='row_sparse') | ||
embed = mx.symbol.dot(x, w) | ||
y = mx.symbol.Variable("softmax_label") | ||
model = mx.symbol.SoftmaxOutput(data=embed, label=y, name="out") | ||
return model | ||
|
||
|
||
def row_sparse_pull(kv, key, data, slices, weight_array, priority): | ||
# if have kvstore, need to pull corresponding rows of | ||
# the weights to each context | ||
# column indices (NDArray type) of the csr data | ||
# used as the row_idx of the weight row-sparse matrix | ||
row_indices = data.indices | ||
if len(slices) == 1: | ||
kv.row_sparse_pull(key, weight_array, priority=priority, row_ids=row_indices) | ||
else: # more than one slices, multi-GPU training. Need to retain weight rows according to data slices | ||
# TODO(junwu): | ||
# the following line blocks, may need to pre-compute | ||
# and cache it outside the for loop | ||
indptr = data.indptr.asnumpy() | ||
row_idx_array = [] | ||
for s in slices: | ||
row_idx_array.append(row_indices[indptr[s.start]:indptr[s.stop]]) | ||
kv.row_sparse_pull(key, weight_array, priority=priority, row_ids=row_idx_array) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
# arg parser | ||
args = parser.parse_args() | ||
num_epoch = args.num_epoch | ||
num_batch = args.num_batch | ||
kvstore = args.kvstore | ||
profiler = args.profiler > 0 | ||
batch_size = args.batch_size if args.num_gpu == 0 else args.num_gpu * args.batch_size | ||
dummy_iter = args.dummy_iter | ||
dataset = args.dataset | ||
log_level = args.log_level | ||
contexts = mx.context.cpu(0) if args.num_gpu < 1\ | ||
else [mx.context.gpu(i) for i in range(args.num_gpu)] | ||
|
||
# create kvstore when there are gpus | ||
kv = mx.kvstore.create(kvstore) if args.num_gpu >= 1 else None | ||
rank = kv.rank if kv is not None else 0 | ||
num_worker = kv.num_workers if kv is not None else 1 | ||
|
||
# only print log for rank 0 worker | ||
import logging | ||
if rank != 0: | ||
log_level = logging.ERROR | ||
elif log_level == 'DEBUG': | ||
log_level = logging.DEBUG | ||
else: | ||
log_level = logging.INFO | ||
head = '%(asctime)-15s %(message)s' | ||
logging.basicConfig(level=log_level, format=head) | ||
|
||
# dataset | ||
assert(dataset in datasets), "unknown dataset " + dataset | ||
metadata = datasets[dataset] | ||
feature_dim = metadata['feature_dim'] | ||
if logging: | ||
logging.debug('preparing data ... ') | ||
data_dir = os.path.join(os.getcwd(), 'data') | ||
path = os.path.join(data_dir, metadata['data_name']) | ||
if not os.path.exists(path): | ||
get_libsvm_data(data_dir, metadata['data_name'], metadata['url'], | ||
metadata['data_origin_name']) | ||
assert os.path.exists(path) | ||
|
||
# data iterator | ||
train_data = mx.io.LibSVMIter(data_libsvm=path, data_shape=(feature_dim,), | ||
batch_size=batch_size, num_parts=num_worker, | ||
part_index=rank) | ||
if dummy_iter: | ||
train_data = DummyIter(train_data) | ||
|
||
# model | ||
model = get_sym(feature_dim) | ||
|
||
# module | ||
mod = mx.mod.Module(symbol=model, data_names=['data'], | ||
label_names=['softmax_label'], context=contexts) | ||
mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label) | ||
mod.init_params(initializer=mx.init.Uniform(scale=.1)) | ||
sgd = mx.optimizer.SGD(momentum=0.0, clip_gradient=5.0, | ||
learning_rate=0.1, rescale_grad=1.0/batch_size/num_worker) | ||
mod.init_optimizer(optimizer=sgd, kvstore=kv) | ||
# use accuracy as the metric | ||
metric = mx.metric.create('acc') | ||
|
||
index = mod._exec_group.param_names.index('w') | ||
# weight_array bound to executors of the contexts | ||
weight_array = mod._exec_group.param_arrays[index] | ||
|
||
# start profiler | ||
if profiler: | ||
device = 'cpu' | ||
if args.num_gpu > 0: | ||
device = 'gpu' + str(args.num_gpu) | ||
name = 'profile_' + args.dataset + '_' + device + '_nworker' + str(num_worker)\ | ||
+ '_batchsize' + str(args.batch_size) + '_outdim' + str(args.output_dim) + '.json' | ||
mx.profiler.profiler_set_config(mode='all', filename=name) | ||
mx.profiler.profiler_set_state('run') | ||
|
||
logging.debug('start training ...') | ||
start = time.time() | ||
data_iter = iter(train_data) | ||
for epoch in range(num_epoch): | ||
nbatch = 0 | ||
end_of_batch = False | ||
data_iter.reset() | ||
metric.reset() | ||
next_batch = next(data_iter) | ||
if kv is not None: | ||
row_sparse_pull(kv, 'w', next_batch.data[0], mod._exec_group.slices, weight_array, -index) | ||
while not end_of_batch: | ||
nbatch += 1 | ||
batch = next_batch | ||
|
||
mod.forward_backward(batch) | ||
# update parameters | ||
mod.update() | ||
|
||
try: | ||
# pre fetch next batch | ||
next_batch = next(data_iter) | ||
if nbatch == num_batch: | ||
raise StopIteration | ||
if kv is not None: | ||
row_sparse_pull(kv, 'w', next_batch.data[0], mod._exec_group.slices, weight_array, -index) | ||
except StopIteration: | ||
end_of_batch = True | ||
# accumulate prediction accuracy | ||
mod.update_metric(metric, batch.label) | ||
logging.info('epoch %d, %s' % (epoch, metric.get())) | ||
if epoch == 0: | ||
print "num_batches = ", nbatch | ||
if profiler: | ||
mx.profiler.profiler_set_state('stop') | ||
end = time.time() | ||
time_cost = end - start | ||
logging.info('num_worker = ' + str(num_worker) + ', time cost = ' + str(time_cost)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Adding
delay_alloc=True
should work just fine. Did it break any unit test?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
No, it doesn't break any unit tests.