forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[BENCH] Add Benchmark for Rasp (#68)
* [BENCH] Add Benchmark for Rasp * [BENCH] Add arg opt-level * [BENCH] Add model choices * [BENCH] Improve
- Loading branch information
1 parent
f78c9c1
commit 84646ae
Showing
2 changed files
with
79 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
""" Benchmark script for performance on Raspberry Pi. For example, run the file with: | ||
`python rasp_imagenet_bench.py --model='modbilenet' --host='rasp0' --port=9090`. For | ||
more details about how to set up the inference environment on Raspberry Pi, Please | ||
refer to NNVM Tutorial: Deploy the Pretrained Model on Raspberry Pi """ | ||
import time | ||
import argparse | ||
import numpy as np | ||
import tvm | ||
import nnvm.compiler | ||
import nnvm.testing | ||
from tvm.contrib import util, rpc | ||
from tvm.contrib import graph_runtime as runtime | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--model', type=str, required=True, choices=['resnet', 'mobilenet'], | ||
help="The model type.") | ||
parser.add_argument('--host', type=str, required=True, help="The host address of your Raspberry Pi.") | ||
parser.add_argument('--port', type=int, required=True, help="The port number of your Raspberry Pi.") | ||
parser.add_argument('--opt-level', type=int, default=1, help="Level of optimization.") | ||
parser.add_argument('--num-iter', type=int, default=50, help="Number of iteration during benchmark.") | ||
args = parser.parse_args() | ||
|
||
opt_level = args.opt_level | ||
target = "llvm -target=armv7l-none-linux-anueabihf -mcpu=cortex-a53 -mattr=+neon" | ||
|
||
num_iter = args.num_iter | ||
batch_size = 1 | ||
num_classes = 1000 | ||
image_shape = (3, 224, 224) | ||
|
||
data_shape = (batch_size,) + image_shape | ||
out_shape = (batch_size, num_classes) | ||
if args.model == 'resnet': | ||
net, params = nnvm.testing.resnet.get_workload( | ||
batch_size=1, image_shape=image_shape) | ||
elif args.model == 'mobilenet': | ||
net, params = nnvm.testing.mobilenet.get_workload( | ||
batch_size=1, image_shape=image_shape) | ||
else: | ||
raise ValueError('no benchmark prepared for {}.'.format(args.model)) | ||
|
||
|
||
with nnvm.compiler.build_config(opt_level=opt_level): | ||
with tvm.target.rasp(): | ||
graph, lib, params = nnvm.compiler.build( | ||
net, target, shape={"data": data_shape}, params=params) | ||
|
||
tmp = util.tempdir() | ||
lib_fname = tmp.relpath('net.o') | ||
lib.save(lib_fname) | ||
|
||
remote = rpc.connect(args.host, args.port) | ||
remote.upload(lib_fname) | ||
|
||
ctx = remote.cpu(0) | ||
rlib = remote.load_module('net.o') | ||
rparams = {k: tvm.nd.array(v, ctx) for k, v in params.items()} | ||
|
||
module = runtime.create(graph, rlib, ctx) | ||
module.set_input('data', tvm.nd.array(np.random.uniform(size=(data_shape)).astype("float32"))) | ||
module.set_input(**rparams) | ||
module.run() | ||
out = module.get_output(0, tvm.nd.empty(out_shape, ctx=ctx)) | ||
out.asnumpy() | ||
|
||
print('benchmark args: {}'.format(args)) | ||
ftimer = module.module.time_evaluator("run", ctx, num_iter) | ||
for i in range(3): | ||
prof_res = ftimer() | ||
print(prof_res) | ||
# sleep for avoiding cpu overheat | ||
time.sleep(45) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Submodule tvm
updated
from 5d9647 to 7d42f9