Skip to content

Commit

Permalink
Add more checks on delay_density, fixes #89
Browse files Browse the repository at this point in the history
  • Loading branch information
pratikunterwegs committed Nov 1, 2023
1 parent 01f33e0 commit e41f9de
Show file tree
Hide file tree
Showing 6 changed files with 227 additions and 15 deletions.
10 changes: 7 additions & 3 deletions R/estimate_ascertainment.R
Original file line number Diff line number Diff line change
Expand Up @@ -80,10 +80,14 @@ estimate_ascertainment <- function(data,

# check delay_density and run over short sequence to test output
stopifnot(
"`delay_density` must be a distribution density function with 1 argument
evaluating density at a vector of values and returning a numeric vector.
"`delay_density` must be a function evaluating distribution density at a
vector of values and returning a numeric vector of the same length.
E.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1)" =
checkmate::test_function(delay_density, null.ok = TRUE)
(checkmate::test_function(delay_density) &&
checkmate::test_numeric(delay_density(seq(10)),
lower = 0,
any.missing = FALSE, finite = TRUE, len = 10L
)) || is.null(delay_density)
)

# match argument for type
Expand Down
10 changes: 7 additions & 3 deletions R/estimate_rolling.R
Original file line number Diff line number Diff line change
Expand Up @@ -70,10 +70,14 @@ cfr_rolling <- function(data,
# this solution works when df$date is `Date`
# this may need more thought for dates that are integers, POSIXct,
# or other units; consider the units package
"`delay_density` must be a distribution density function with 1 argument
evaluating density at a vector of values and returning a numeric vector.
"`delay_density` must be a function evaluating distribution density at a
vector of values and returning a numeric vector of the same length.
E.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1)" =
checkmate::test_function(delay_density, null.ok = TRUE)
(checkmate::test_function(delay_density) &&
checkmate::test_numeric(delay_density(seq(10)),
lower = 0,
any.missing = FALSE, finite = TRUE, len = 10L
)) || is.null(delay_density)
)
checkmate::assert_count(poisson_threshold)

Expand Down
10 changes: 7 additions & 3 deletions R/estimate_static.R
Original file line number Diff line number Diff line change
Expand Up @@ -118,10 +118,14 @@ cfr_static <- function(data,
# this solution works when df$date is `Date`
# this may need more thought for dates that are integers, POSIXct,
# or other units; consider the units package
"`delay_density` must be a distribution density function with 1 argument
evaluating density at a vector of values and returning a numeric vector.
"`delay_density` must be a function evaluating distribution density at a
vector of values and returning a numeric vector of the same length.
E.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1)" =
checkmate::test_function(delay_density, null.ok = TRUE)
(checkmate::test_function(delay_density) &&
checkmate::test_numeric(delay_density(seq(10)),
lower = 0,
any.missing = FALSE, finite = TRUE, len = 10L
)) || is.null(delay_density)
)
checkmate::assert_count(poisson_threshold)

Expand Down
10 changes: 7 additions & 3 deletions R/estimate_time_varying.R
Original file line number Diff line number Diff line change
Expand Up @@ -110,10 +110,14 @@ cfr_time_varying <- function(data,
stopifnot(
"`smoothing_window` must be an odd number greater than 0" =
(smoothing_window %% 2 != 0),
"`delay_density` must be a distribution density function with 1 argument
evaluating density at a vector of values and returning a numeric vector.
"`delay_density` must be a function evaluating distribution density at a
vector of values and returning a numeric vector of the same length.
E.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1)" =
checkmate::test_function(delay_density, null.ok = TRUE)
(checkmate::test_function(delay_density) &&
checkmate::test_numeric(delay_density(seq(10)),
lower = 0,
any.missing = FALSE, finite = TRUE, len = 10L
)) || is.null(delay_density)
)

# prepare a new dataframe with smoothed columns if requested
Expand Down
10 changes: 7 additions & 3 deletions R/known_outcomes.R
Original file line number Diff line number Diff line change
Expand Up @@ -51,10 +51,14 @@ known_outcomes <- function(data,
any.missing = FALSE
)
stopifnot(
"`delay_density` must be a distribution density function with 1 argument
evaluating density at a vector of values and returning a numeric vector.
"`delay_density` must be a function evaluating distribution density at a
vector of values and returning a numeric vector of the same length.
E.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1)" =
checkmate::test_function(delay_density, null.ok = TRUE)
(checkmate::test_function(delay_density) &&
checkmate::test_numeric(delay_density(seq(10)),
lower = 0,
any.missing = FALSE, finite = TRUE, len = 10L
)) || is.null(delay_density)
)

pmf_vals <- delay_density(seq(from = 0, to = nrow(data) - 1L))
Expand Down
192 changes: 192 additions & 0 deletions tests/testthat/test-delay_density.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# Test for delay density passed to cfr_*()
test_that("CFR functions work with delay_density as lambda", {
# Checks pass and cfr_static function works
ddens <- function(x) stats::dgamma(x, 5, 1)
expect_no_condition(
cfr_static(ebola1976, delay_density = ddens)
)
expect_no_condition(
cfr_rolling(ebola1976, delay_density = ddens)
)
expect_no_condition(
cfr_time_varying(ebola1976, delay_density = ddens)
)
expect_no_condition(
estimate_ascertainment(
ebola1976,
delay_density = ddens, severity_baseline = 0.7
)
)
})

test_that("CFR functions work with delay_density as <distcrete>", {
# Checks pass and cfr_static function works with disctcrete
ddens <- distcrete::distcrete("gamma", 1, shape = 2.4, scale = 3.33)$d
expect_no_condition(
cfr_static(ebola1976, delay_density = ddens)
)
expect_no_condition(
cfr_rolling(ebola1976, delay_density = ddens)
)
expect_no_condition(
cfr_time_varying(ebola1976, delay_density = ddens)
)
expect_no_condition(
estimate_ascertainment(
ebola1976,
delay_density = ddens, severity_baseline = 0.7
)
)
})

# Test error cases
msg <- "(`delay_density` must be)*(function evaluating distribution density)"

test_that("Input checking on delay_density works", {
# Checks fail on badly specified delay_density fns

# Function returns NULL
ddens <- function(x) NULL
expect_error(
cfr_static(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_rolling(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_time_varying(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
estimate_ascertainment(
ebola1976,
delay_density = ddens, severity_baseline = 0.7
),
regexp = msg
)

# Function returns non-numeric
# NOTE the use of seq_along - there are no checks that the fn
# is statistically correct or a valid density function
ddens <- function(x) as.character(seq_along(x))
expect_error(
cfr_static(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_rolling(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_time_varying(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
estimate_ascertainment(
ebola1976,
delay_density = ddens, severity_baseline = 0.7
),
regexp = msg
)

# Function returns Inf
ddens <- function(x) rep(Inf, times = length(x))
expect_error(
cfr_static(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_rolling(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_time_varying(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
estimate_ascertainment(
ebola1976,
delay_density = ddens, severity_baseline = 0.7
),
regexp = msg
)

# Function returns negative values
# NOTE the use of seq_along - there are no checks that the fn
# is statistically correct or a valid density function
ddens <- function(x) -seq_along(x)
expect_error(
cfr_static(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_rolling(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_time_varying(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
estimate_ascertainment(
ebola1976,
delay_density = ddens, severity_baseline = 0.7
),
regexp = msg
)

# Function returns NAs
# NOTE the use of seq_along - there are no checks that the fn
# is statistically correct or a valid density function
ddens <- function(x) {
y <- seq_along(x)
y[1] <- NA_real_
}
expect_error(
cfr_static(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_rolling(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_time_varying(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
estimate_ascertainment(
ebola1976,
delay_density = ddens, severity_baseline = 0.7
),
regexp = msg
)

# Function returns wrong length
# NOTE the use of seq_along - there are no checks that the fn
# is statistically correct or a valid density function
ddens <- function(x) {
head(seq_along(x))
}
expect_error(
cfr_static(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_rolling(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
cfr_time_varying(ebola1976, delay_density = ddens),
regexp = msg
)
expect_error(
estimate_ascertainment(
ebola1976,
delay_density = ddens, severity_baseline = 0.7
),
regexp = msg
)
})

0 comments on commit e41f9de

Please sign in to comment.