Skip to content

Commit

Permalink
Merge pull request #366 from epiforecasts/negbin-edge-case
Browse files Browse the repository at this point in the history
allow edge case of negative binomial with 0 mean
  • Loading branch information
sbfnk authored Apr 28, 2023
2 parents c38963d + f394c3e commit 6244b20
Show file tree
Hide file tree
Showing 5 changed files with 83 additions and 94 deletions.
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@ This release is in development. For a stable release install 1.3.5 from CRAN.
* Moved to a GitHub Action to only lint changed files.
* Linted the package with a wider range of default linters.
* Added a GitHub Action to build the README when it is altered.
* Added handling of edge case where we sample from the negative binomial with
mean close or equal to 0. By @sbfnk in #366.

# EpiNow2 1.3.5

Expand Down
163 changes: 73 additions & 90 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,18 +43,18 @@ The default model uses a non-stationary Gaussian process to estimate the
time-varying reproduction number and then infer infections. Other
options include:

- A stationary Gaussian process (faster to estimate but currently
gives reduced performance for real time estimates).
- User specified breakpoints.
- A fixed reproduction number.
- As piecewise constant by combining a fixed reproduction number with
breakpoints.
- As a random walk (by combining a fixed reproduction number with
regularly spaced breakpoints (i.e weekly)).
- Inferring infections using deconvolution/back-calculation and then
calculating the time-varying reproduction number.
- Adjustment for the remaining susceptible population beyond the
forecast horizon.
- A stationary Gaussian process (faster to estimate but currently gives
reduced performance for real time estimates).
- User specified breakpoints.
- A fixed reproduction number.
- As piecewise constant by combining a fixed reproduction number with
breakpoints.
- As a random walk (by combining a fixed reproduction number with
regularly spaced breakpoints (i.e weekly)).
- Inferring infections using deconvolution/back-calculation and then
calculating the time-varying reproduction number.
- Adjustment for the remaining susceptible population beyond the
forecast horizon.

These options generally reduce runtimes at the cost of the granularity
of estimates or at the cost of real-time performance.
Expand All @@ -81,20 +81,20 @@ admissions) using `estimate_secondary()`.

## Installation

Install the stable version of the package:
Install the released version of the package:

``` r
install.packages("EpiNow2")
```

Install the stable development version of the package with:
Install the development version of the package with:

``` r
install.packages("EpiNow2", repos = "https://epiforecasts.r-universe.dev")
```

Install the unstable development version of the package with (few users
should need to do this):
Alternatively, install the development version of the package with (few
users should need to do this):

``` r
remotes::install_github("epiforecasts/EpiNow2")
Expand Down Expand Up @@ -161,7 +161,7 @@ reporting_delay <- estimate_delay(

If data was not available we could instead make an informed estimate of
the likely delay (*this is a synthetic example and not applicable to
real world use cases and we have not included uncertainty to decreased
real world use cases and we have not included uncertainty to decrease
runtimes*),

``` r
Expand Down Expand Up @@ -201,7 +201,6 @@ Load example case data from `{EpiNow2}`.
reported_cases <- example_confirmed[1:60]
head(reported_cases)
#> date confirm
#> <Date> <num>
#> 1: 2020-02-22 14
#> 2: 2020-02-23 62
#> 3: 2020-02-24 53
Expand Down Expand Up @@ -229,10 +228,10 @@ estimates <- epinow(
stan = stan_opts(cores = 4, control = list(adapt_delta = 0.99)),
verbose = interactive()
)
#> DEBUG [2023-01-24 20:19:35] epinow: Running in exact mode for 2000 samples (across 4 chains each with a warm up of 250 iterations each) and 74 time steps of which 7 are a forecast
names(estimates)
#> [1] "estimates" "estimated_reported_cases" "summary"
#> [4] "plots" "timing"
#> [1] "estimates" "estimated_reported_cases"
#> [3] "summary" "plots"
#> [5] "timing"
```

Both summary measures and posterior samples are returned for all
Expand All @@ -244,58 +243,54 @@ parameters at the latest date partially supported by data.
knitr::kable(summary(estimates))
```

| measure | estimate |
| :------------------------------------ | :---------------------- |
| New confirmed cases by infection date | 2241 (11754043) |
| Expected change in daily cases | Likely decreasing |
| Effective reproduction no. | 0.87 (0.62 – 1.2) |
| Rate of growth | \-0.037 (-0.11 – 0.042) |
| Doubling/halving time (days) | \-19 (17 – -6.2) |
| measure | estimate |
|:--------------------------------------|:-----------------------|
| New confirmed cases by infection date | 2260 (11454079) |
| Expected change in daily cases | Likely decreasing |
| Effective reproduction no. | 0.88 (0.63 – 1.2) |
| Rate of growth | -0.033 (-0.11 – 0.041) |
| Doubling/halving time (days) | -21 (17 – -6.3) |

Summarised parameter estimates can also easily be returned, either
filtered for a single parameter or for all parameters.

``` r
head(summary(estimates, type = "parameters", params = "R"))
#> date variable strat type median mean sd lower_90 lower_50
#> <Date> <char> <int> <char> <num> <num> <num> <num> <num>
#> 1: 2020-02-22 R NA estimate 2.148647 2.154214 0.14450153 1.929487 2.051622
#> 2: 2020-02-23 R NA estimate 2.121512 2.125653 0.12003979 1.931839 2.042736
#> 3: 2020-02-24 R NA estimate 2.093420 2.095419 0.09974015 1.936182 2.027337
#> 4: 2020-02-25 R NA estimate 2.061786 2.063610 0.08349157 1.930889 2.007475
#> 5: 2020-02-26 R NA estimate 2.030095 2.030369 0.07109622 1.915872 1.983404
#> 6: 2020-02-27 R NA estimate 1.996345 1.995861 0.06219250 1.893969 1.956212
#> lower_20 upper_20 upper_50 upper_90
#> <num> <num> <num> <num>
#> 1: 2.111131 2.185022 2.253146 2.398995
#> 2: 2.091795 2.154419 2.208429 2.328889
#> 3: 2.067632 2.120660 2.161471 2.260970
#> 4: 2.041539 2.084712 2.119120 2.199715
#> 5: 2.011280 2.048115 2.077987 2.146658
#> 6: 1.980218 2.012074 2.036623 2.097979
#> date variable strat type median mean sd lower_90
#> 1: 2020-02-22 R NA estimate 2.106722 2.110304 0.13394453 1.893217
#> 2: 2020-02-23 R NA estimate 2.078456 2.079754 0.11199646 1.895084
#> 3: 2020-02-24 R NA estimate 2.047571 2.047837 0.09415931 1.894614
#> 4: 2020-02-25 R NA estimate 2.013123 2.014628 0.08001628 1.881882
#> 5: 2020-02-26 R NA estimate 1.979236 1.980256 0.06909073 1.866860
#> 6: 2020-02-27 R NA estimate 1.945204 1.944881 0.06089018 1.845480
#> lower_50 lower_20 upper_20 upper_50 upper_90
#> 1: 2.017975 2.075736 2.143921 2.199814 2.331646
#> 2: 2.003099 2.051668 2.108079 2.154005 2.260400
#> 3: 1.983107 2.022437 2.070778 2.109637 2.199787
#> 4: 1.960463 1.993953 2.033858 2.068386 2.143568
#> 5: 1.933872 1.962735 1.997947 2.025679 2.091690
#> 6: 1.903834 1.930841 1.960120 1.983832 2.045497
```

Reported cases are returned in a separate data frame in order to
streamline the reporting of forecasts and for model evaluation.

``` r
head(summary(estimates, output = "estimated_reported_cases"))
#> date type median mean sd lower_90 lower_50 lower_20 upper_20
#> <Date> <char> <num> <num> <num> <num> <num> <num> <num>
#> 1: 2020-02-22 gp_rt 50 51.6335 14.08188 32 41 47.0 54
#> 2: 2020-02-23 gp_rt 69 70.4195 18.02745 44 58 64.0 73
#> 3: 2020-02-24 gp_rt 76 78.0840 19.29451 49 64 72.0 81
#> 4: 2020-02-25 gp_rt 79 79.7110 19.49842 51 66 73.0 83
#> 5: 2020-02-26 gp_rt 84 85.7190 21.08341 54 71 79.0 90
#> 6: 2020-02-27 gp_rt 119 121.6290 29.19472 77 101 112.6 127
#> upper_50 upper_90
#> <num> <num>
#> 1: 60 77.00
#> 2: 81 103.00
#> 3: 89 112.00
#> 4: 92 114.00
#> 5: 98 123.05
#> 6: 140 173.00
#> date type median mean sd lower_90 lower_50 lower_20
#> 1: 2020-02-22 gp_rt 50 51.1930 13.63311 30 42 47
#> 2: 2020-02-23 gp_rt 68 70.0595 17.77081 44 58 64
#> 3: 2020-02-24 gp_rt 76 77.0875 18.71673 49 64 71
#> 4: 2020-02-25 gp_rt 77 78.7475 19.59236 50 65 73
#> 5: 2020-02-26 gp_rt 85 86.1595 20.75091 55 72 80
#> 6: 2020-02-27 gp_rt 118 120.7215 29.62068 77 100 111
#> upper_20 upper_50 upper_90
#> 1: 54 60 76.00
#> 2: 73 80 100.05
#> 3: 80 88 109.05
#> 4: 82 91 114.00
#> 5: 90 99 123.00
#> 6: 125 138 173.00
```

A range of plots are returned (with the single summary plot shown
Expand All @@ -308,7 +303,7 @@ plot(estimates)

![](man/figures/unnamed-chunk-14-1.png)<!-- -->

### [regional\_epinow()](https://epiforecasts.io/EpiNow2/reference/regional_epinow.html)
### [regional_epinow()](https://epiforecasts.io/EpiNow2/reference/regional_epinow.html)

The `regional_epinow()` function runs the `epinow()` function across
multiple regions in an efficient manner.
Expand All @@ -322,7 +317,6 @@ reported_cases <- data.table::rbindlist(list(
))
head(reported_cases)
#> date confirm region
#> <Date> <num> <char>
#> 1: 2020-02-22 14 testland
#> 2: 2020-02-23 62 testland
#> 3: 2020-02-24 53 testland
Expand All @@ -345,30 +339,19 @@ estimates <- regional_epinow(
gp = NULL,
stan = stan_opts(cores = 4, warmup = 250, samples = 1000)
)
#> INFO [2023-01-24 20:22:12] Producing following optional outputs: regions, summary, samples, plots, latest
#> INFO [2023-01-24 20:22:12] Reporting estimates using data up to: 2020-04-21
#> INFO [2023-01-24 20:22:12] No target directory specified so returning output
#> INFO [2023-01-24 20:22:12] Producing estimates for: testland, realland
#> INFO [2023-01-24 20:22:12] Regions excluded: none
#> DEBUG [2023-01-24 20:22:12] testland: Running in exact mode for 1000 samples (across 4 chains each with a warm up of 250 iterations each) and 74 time steps of which 7 are a forecast
#> WARN [2023-01-24 20:22:30] testland (chain: 1): Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess -
#> WARN [2023-01-24 20:22:30] testland (chain: 1): Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess -
#> INFO [2023-01-24 20:22:31] Completed estimates for: testland
#> DEBUG [2023-01-24 20:22:31] realland: Running in exact mode for 1000 samples (across 4 chains each with a warm up of 250 iterations each) and 74 time steps of which 7 are a forecast
#> WARN [2023-01-24 20:22:48] realland (chain: 1): Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess -
#> INFO [2023-01-24 20:22:49] Completed estimates for: realland
#> INFO [2023-01-24 20:22:49] Completed regional estimates
#> INFO [2023-01-24 20:22:49] Regions with estimates: 2
#> INFO [2023-01-24 20:22:49] Regions with runtime errors: 0
#> INFO [2023-01-24 20:22:49] Producing summary
#> INFO [2023-01-24 20:22:49] No summary directory specified so returning summary output
#> INFO [2023-01-24 20:22:50] No target directory specified so returning timings
#> INFO [2023-04-28 11:43:24] Producing following optional outputs: regions, summary, samples, plots, latest
#> INFO [2023-04-28 11:43:24] Reporting estimates using data up to: 2020-04-21
#> INFO [2023-04-28 11:43:24] No target directory specified so returning output
#> INFO [2023-04-28 11:43:24] Producing estimates for: testland, realland
#> INFO [2023-04-28 11:43:24] Regions excluded: none
#> INFO [2023-04-28 11:43:52] Completed estimates for: testland
#> INFO [2023-04-28 11:44:20] Completed estimates for: realland
#> INFO [2023-04-28 11:44:20] Completed regional estimates
#> INFO [2023-04-28 11:44:20] Regions with estimates: 2
#> INFO [2023-04-28 11:44:20] Regions with runtime errors: 0
#> INFO [2023-04-28 11:44:20] Producing summary
#> INFO [2023-04-28 11:44:20] No summary directory specified so returning summary output
#> INFO [2023-04-28 11:44:21] No target directory specified so returning timings
```

Results from each region are stored in a `regional` list with across
Expand All @@ -391,10 +374,10 @@ output.
knitr::kable(estimates$summary$summarised_results$table)
```

| Region | New confirmed cases by infection date | Expected change in daily cases | Effective reproduction no. | Rate of growth | Doubling/halving time (days) |
| :------- | :------------------------------------ | :----------------------------- | :------------------------- | :---------------------- | :--------------------------- |
| realland | 2107 (11683633) | Likely decreasing | 0.86 (0.62 – 1.2) | \-0.039 (-0.11 – 0.043) | \-18 (16 – -6.1) |
| testland | 2075 (11643683) | Likely decreasing | 0.86 (0.61 – 1.2) | \-0.041 (-0.12 – 0.052) | \-17 (13 – -6) |
| Region | New confirmed cases by infection date | Expected change in daily cases | Effective reproduction no. | Rate of growth | Doubling/halving time (days) |
|:---------|:--------------------------------------|:-------------------------------|:---------------------------|:----------------------|:-----------------------------|
| realland | 2116 (11593665) | Likely decreasing | 0.86 (0.61 – 1.2) | -0.04 (-0.11 – 0.056) | -17 (12 – -6) |
| testland | 2069 (11413628) | Likely decreasing | 0.86 (0.6 – 1.1) | -0.039 (-0.12 – 0.04) | -18 (17 – -5.9) |

A range of plots are again returned (with the single summary plot shown
below).
Expand Down
12 changes: 8 additions & 4 deletions inst/stan/functions/observation_model.stan
Original file line number Diff line number Diff line change
Expand Up @@ -110,11 +110,15 @@ int[] report_rng(vector reports, real[] rep_phi, int model_type) {
}

for (s in 1:t) {
// defer to poisson if phi is large, to avoid overflow
if (sqrt_phi > 1e4) {
sampled_reports[s] = poisson_rng(reports[s] > 1e8 ? 1e8 : reports[s]);
if (reports[s] < 1e-8) {
sampled_reports[s] = 0;
} else {
sampled_reports[s] = neg_binomial_2_rng(reports[s] > 1e8 ? 1e8 : reports[s], sqrt_phi);
// defer to poisson if phi is large, to avoid overflow
if (sqrt_phi > 1e4) {
sampled_reports[s] = poisson_rng(reports[s] > 1e8 ? 1e8 : reports[s]);
} else {
sampled_reports[s] = neg_binomial_2_rng(reports[s] > 1e8 ? 1e8 : reports[s], sqrt_phi);
}
}
}
return(sampled_reports);
Expand Down
Binary file modified man/figures/unnamed-chunk-14-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified man/figures/unnamed-chunk-18-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 6244b20

Please sign in to comment.