Skip to content

elsiddh/docker-wireguard

 
 

Repository files navigation

linuxserver.io

Blog Discord Discourse Fleet GitHub Open Collective

The LinuxServer.io team brings you another container release featuring:

  • regular and timely application updates
  • easy user mappings (PGID, PUID)
  • custom base image with s6 overlay
  • weekly base OS updates with common layers across the entire LinuxServer.io ecosystem to minimise space usage, down time and bandwidth
  • regular security updates

Find us at:

  • Blog - all the things you can do with our containers including How-To guides, opinions and much more!
  • Discord - realtime support / chat with the community and the team.
  • Discourse - post on our community forum.
  • Fleet - an online web interface which displays all of our maintained images.
  • GitHub - view the source for all of our repositories.
  • Open Collective - please consider helping us by either donating or contributing to our budget

GitHub Stars GitHub Release GitHub Package Repository GitLab Container Registry MicroBadger Layers Docker Pulls Docker Stars Jenkins Build LSIO CI

WireGuard® is an extremely simple yet fast and modern VPN that utilizes state-of-the-art cryptography. It aims to be faster, simpler, leaner, and more useful than IPsec, while avoiding the massive headache. It intends to be considerably more performant than OpenVPN. WireGuard is designed as a general purpose VPN for running on embedded interfaces and super computers alike, fit for many different circumstances. Initially released for the Linux kernel, it is now cross-platform (Windows, macOS, BSD, iOS, Android) and widely deployable. It is currently under heavy development, but already it might be regarded as the most secure, easiest to use, and simplest VPN solution in the industry.

wireguard

Supported Architectures

Our images support multiple architectures such as x86-64, arm64 and armhf. We utilise the docker manifest for multi-platform awareness. More information is available from docker here and our announcement here.

Simply pulling linuxserver/wireguard should retrieve the correct image for your arch, but you can also pull specific arch images via tags.

The architectures supported by this image are:

Architecture Tag
x86-64 amd64-latest
arm64 arm64v8-latest
armhf arm32v7-latest

Usage

Here are some example snippets to help you get started creating a container.

docker

docker create \
  --name=wireguard \
  --cap-add=NET_ADMIN \
  --cap-add=SYS_MODULE \
  -e PUID=1000 \
  -e PGID=1000 \
  -e TZ=Europe/London \
  -e SERVERURL=wireguard.domain.com `#optional` \
  -e SERVERPORT=51820 `#optional` \
  -e PEERS=1 `#optional` \
  -e PEERDNS=auto `#optional` \
  -e INTERNAL_SUBNET=10.13.13.0 `#optional` \
  -p 51820:51820/udp \
  -v /path/to/appdata/config:/config \
  -v /lib/modules:/lib/modules \
  --sysctl="net.ipv4.conf.all.src_valid_mark=1" \
  --restart unless-stopped \
  linuxserver/wireguard

docker-compose

Compatible with docker-compose v2 schemas.

---
version: "2.1"
services:
  wireguard:
    image: linuxserver/wireguard
    container_name: wireguard
    cap_add:
      - NET_ADMIN
      - SYS_MODULE
    environment:
      - PUID=1000
      - PGID=1000
      - TZ=Europe/London
      - SERVERURL=wireguard.domain.com #optional
      - SERVERPORT=51820 #optional
      - PEERS=1 #optional
      - PEERDNS=auto #optional
      - INTERNAL_SUBNET=10.13.13.0 #optional
    volumes:
      - /path/to/appdata/config:/config
      - /lib/modules:/lib/modules
    ports:
      - 51820:51820/udp
    sysctls:
      - net.ipv4.conf.all.src_valid_mark=1
    restart: unless-stopped

Parameters

Container images are configured using parameters passed at runtime (such as those above). These parameters are separated by a colon and indicate <external>:<internal> respectively. For example, -p 8080:80 would expose port 80 from inside the container to be accessible from the host's IP on port 8080 outside the container.

Parameter Function
-p 51820/udp wireguard port
-e PUID=1000 for UserID - see below for explanation
-e PGID=1000 for GroupID - see below for explanation
-e TZ=Europe/London Specify a timezone to use EG Europe/London
-e SERVERURL=wireguard.domain.com External IP or domain name for docker host. Used in server mode. If set to auto, the container will try to determine and set the external IP automatically
-e SERVERPORT=51820 External port for docker host. Used in server mode.
-e PEERS=1 Number of peers to create confs for. Required for server mode.
-e PEERDNS=auto DNS server set in peer/client configs (can be set as 8.8.8.8). Used in server mode. Defaults to auto, which uses wireguard docker host's DNS via included CoreDNS forward.
-e INTERNAL_SUBNET=10.13.13.0 Internal subnet for the wireguard and server and peers (only change if it clashes). Used in server mode.
-v /config Contains all relevant configuration files.
-v /lib/modules Maps host's modules folder.
--sysctl= Required for client mode.

Environment variables from files (Docker secrets)

You can set any environment variable from a file by using a special prepend FILE__.

As an example:

-e FILE__PASSWORD=/run/secrets/mysecretpassword

Will set the environment variable PASSWORD based on the contents of the /run/secrets/mysecretpassword file.

Umask for running applications

For all of our images we provide the ability to override the default umask settings for services started within the containers using the optional -e UMASK=022 setting. Keep in mind umask is not chmod it subtracts from permissions based on it's value it does not add. Please read up here before asking for support.

User / Group Identifiers

When using volumes (-v flags) permissions issues can arise between the host OS and the container, we avoid this issue by allowing you to specify the user PUID and group PGID.

Ensure any volume directories on the host are owned by the same user you specify and any permissions issues will vanish like magic.

In this instance PUID=1000 and PGID=1000, to find yours use id user as below:

  $ id username
    uid=1000(dockeruser) gid=1000(dockergroup) groups=1000(dockergroup)

 

Application Setup

This image is designed for Ubuntu and Debian based systems mainly (it works on some others, but ymmv). During container start, it will first check if the wireguard module is already installed and loaded. If not, it will then check if the kernel headers are already installed (in /usr/src) and if not, attempt to download the necessary kernel headers from the ubuntu/debian/raspbian repos; then will compile and install the kernel module.

If you're on a debian/ubuntu based host with a custom or downstream distro provided kernel (ie. Pop!_OS), the container won't be able to install the kernel headers from the regular ubuntu and debian repos. In those cases, you can try installing the headers on the host via sudo apt install linux-headers-$(uname -r) (if distro version) and then add a volume mapping for /usr/src:/usr/src, or if custom built, map the location of the existing headers to allow the container to use host installed headers to build the kernel module (tested successful on Pop!_OS, ymmv).

With regards to arm32/64 devices, Raspberry Pi 2-4 running the official ubuntu images prior to focal or Raspbian Buster are supported out of the box. For all other devices and OSes, you can try installing the kernel headers on the host, and mapping /usr/src:/usr/src and it may just work (no guarantees).

This can be run as a server or a client, based on the parameters used.

Server Mode

If the environment variable PEERS is set to a number, the container will run in server mode and the necessary server and peer/client confs will be generated. The peer/client config qr codes will be output in the docker log. They will also be saved in text and png format under /config/peerX.

Variables SERVERURL, SERVERPORT, INTERNAL_SUBNET and PEERDNS are optional variables used for server mode. Any changes to these environment variables will trigger regeneration of server and peer confs. Peer/client confs will be recreated with existing private/public keys. Delete the peer folders for the keys to be recreated along with the confs.

To add more peers/clients later on, you increment the PEERS environment variable and recreate the container.

To display the QR codes of active peers again, you can use the following command and list the peer numbers as arguments: docker exec -it wireguard /app/show-peer 1 4 5 (Keep in mind that the QR codes are also stored as PNGs in the config folder).

The templates used for server and peer confs are saved under /config/templates. Advanced users can modify these templates and force conf generation by deleting /config/wg0.conf and restarting the container.

Client Mode

Do not set the PEERS environment variable. Drop your client conf into the config folder as /config/wg0.conf and start the container.

If you get IPv6 related errors in the log and connection cannot be established, edit the AllowedIPs line in your peer/client wg0.conf to include only 0.0.0.0/0 and not ::/0; and restart the container.

Road warriors, roaming and returning home

If you plan to use Wireguard both remotely and locally, say on your mobile phone, you will need to consider routing. Most firewalls will not route ports forwarded on your WAN interface correctly to the LAN out of the box. This means that when you return home, even though you can see the Wireguard server, the return packets will probably get lost.

This is not a Wireguard specific issue and the two generally accepted solutions are NAT reflection (setting your edge router/firewall up in such a way as it translates internal packets correctly) or split horizon DNS (setting your internal DNS to return the private rather than public IP when connecting locally).

Both of these approaches have positives and negatives however their setup is out of scope for this document as everyone's network layout and equipment will be different.

Docker Mods

Docker Mods

We publish various Docker Mods to enable additional functionality within the containers. The list of Mods available for this image (if any) can be accessed via the dynamic badge above.

Support Info

  • Shell access whilst the container is running: docker exec -it wireguard /bin/bash
  • To monitor the logs of the container in realtime: docker logs -f wireguard
  • container version number
    • docker inspect -f '{{ index .Config.Labels "build_version" }}' wireguard
  • image version number
    • docker inspect -f '{{ index .Config.Labels "build_version" }}' linuxserver/wireguard

Updating Info

Most of our images are static, versioned, and require an image update and container recreation to update the app inside. With some exceptions (ie. nextcloud, plex), we do not recommend or support updating apps inside the container. Please consult the Application Setup section above to see if it is recommended for the image.

Below are the instructions for updating containers:

Via Docker Run/Create

  • Update the image: docker pull linuxserver/wireguard
  • Stop the running container: docker stop wireguard
  • Delete the container: docker rm wireguard
  • Recreate a new container with the same docker create parameters as instructed above (if mapped correctly to a host folder, your /config folder and settings will be preserved)
  • Start the new container: docker start wireguard
  • You can also remove the old dangling images: docker image prune

Via Docker Compose

  • Update all images: docker-compose pull
    • or update a single image: docker-compose pull wireguard
  • Let compose update all containers as necessary: docker-compose up -d
    • or update a single container: docker-compose up -d wireguard
  • You can also remove the old dangling images: docker image prune

Via Watchtower auto-updater (especially useful if you don't remember the original parameters)

  • Pull the latest image at its tag and replace it with the same env variables in one run:
    docker run --rm \
    -v /var/run/docker.sock:/var/run/docker.sock \
    containrrr/watchtower \
    --run-once wireguard
    

Note: We do not endorse the use of Watchtower as a solution to automated updates of existing Docker containers. In fact we generally discourage automated updates. However, this is a useful tool for one-time manual updates of containers where you have forgotten the original parameters. In the long term, we highly recommend using Docker Compose.

  • You can also remove the old dangling images: docker image prune

Building locally

If you want to make local modifications to these images for development purposes or just to customize the logic:

git clone https://github.com/linuxserver/docker-wireguard.git
cd docker-wireguard
docker build \
  --no-cache \
  --pull \
  -t linuxserver/wireguard:latest .

The ARM variants can be built on x86_64 hardware using multiarch/qemu-user-static

docker run --rm --privileged multiarch/qemu-user-static:register --reset

Once registered you can define the dockerfile to use with -f Dockerfile.aarch64.

Versions

  • 06.08.20: - Replace resolvconf with openresolv due to dns issues when a client based on this image is connected to a server also based on this image. Add IPv6 info to readme. Display kernel version in logs.
  • 29.07.20: - Update Coredns config to detect dns loops (existing users need to delete /config/coredns/Corefile and restart).
  • 27.07.20: - Update Coredns config to prevent issues with non-user-defined bridge networks (existing users need to delete /config/coredns/Corefile and restart).
  • 05.07.20: - Add Debian updates and security repos for headers.
  • 25.06.20: - Simplify module tests, prevent iptables issues from resulting in false negatives.
  • 19.06.20: - Add support for Ubuntu Focal (20.04) kernels. Compile wireguard tools and kernel module instead of using the ubuntu packages. Make module install optional. Improve verbosity in logs.
  • 29.05.20: - Add support for 64bit raspbian.
  • 28.04.20: - Add Buster/Stretch backports repos for Debian. Tested with OMV 5 and OMV 4 (on kernel 4.19.0-0.bpo.8-amd64).
  • 20.04.20: - Fix typo in client mode conf existence check.
  • 13.04.20: - Fix bug that forced conf recreation on every start.
  • 08.04.20: - Add arm32/64 builds and enable multi-arch (rpi4 with ubuntu and raspbian buster tested). Add CoreDNS for PEERDNS=auto setting. Update the add-peer/show-peer scripts to utilize the templates and the INTERNAL_SUBNET var (previously missed, oops).
  • 05.04.20: - Add INTERNAL_SUBNET variable to prevent subnet clashes. Add templates for server and peer confs.
  • 01.04.20: - Add show-peer script and include info on host installed headers.
  • 31.03.20: - Initial Release.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Dockerfile 100.0%