Detail-Sensitive Panoramic Annular Semantic Segmentation
New! Google Drive Download Link
For Validation (Most important files):
Unfolded Panoramas for Validation, (400 images)
Annonations, (400 annotation images)
There are 400 panoramas with annotations. Please use the Annotations data for evaluation.
In total, there are 1050 panoramas. Complete Panoramas:
RAW Panoramas: RAW1, RAW2, RAW3
Download the Model (model_superbest.pth) from
Trained-SwaftNet-Model BaiduYun
or
Trained-SwaftNet-Model GoogleDrive
python3.6 eval_cityscapes_color_1.py --datadir /home/kailun/Downloads/DS-PASS-master/eval_swaftnet/data/ --subset val --loadDir ../eval_swaftnet/ --loadWeights model_superbest.pth --loadModel swaftnet.py
If you use our code or dataset, please consider citing any of the following papers:
DS-PASS: Detail-Sensitive Panoramic Annular Semantic Segmentation through SwaftNet for Surrounding Sensing. K. Yang, X. Hu, H. Chen, K. Xiang, K. Wang, R. Stiefelhagen. In IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, United States, October 2020. [PDF] [VIDEO]
Helping the Blind to Get through COVID-19: Social Distancing Assistant Using Real-Time Semantic Segmentation on RGB-D Video. M. Martinez, K. Yang, A. Constantinescu, R. Stiefelhagen. Sensors, 2020. [PDF]