Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add text embedding serving #214

Merged
merged 17 commits into from
Jun 2, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 65 additions & 0 deletions lib/bumblebee/text.ex
Original file line number Diff line number Diff line change
Expand Up @@ -305,6 +305,71 @@ defmodule Bumblebee.Text do
defdelegate text_classification(model_info, tokenizer, opts \\ []),
to: Bumblebee.Text.TextClassification

@type text_embedding_input :: String.t()
@type text_embedding_output :: %{embedding: Nx.Tensor.t()}

@doc """
Builds serving for text embeddings.

The serving accepts `t:text_embedding_input/0` and returns
`t:text_embedding_output/0`. A list of inputs is also supported.

## Options
* `:output_attribute` - the attribute of the model output map to
coderrg marked this conversation as resolved.
Show resolved Hide resolved
retrieve. When the output is a single tensor (rather than a map),
this option is ignored. Defaults to `:pooled_state`

* `:output_pool` - pooling to apply on top of the model output, in case
it is not already a pooled embedding. Supported values: `nil` and
`:mean`. Defaults to `nil`, which applies no pooling on top of the
model output.

* `:embedding_processor` - a post-processing step to apply to the
embedding. Supported values: `nil` and `:l2_norm`. Defaults to
`nil`, which applies no post-processing step to the embedding.
coderrg marked this conversation as resolved.
Show resolved Hide resolved

* `:compile` - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:

* `:batch_size` - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

* `:sequence_length` - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using `:defn_options` to maximally reduce inference
time.

* `:defn_options` - the options for JIT compilation. Defaults to `[]`

## Examples

{:ok, model_info} = Bumblebee.load_model({:hf, "intfloat/e5-large"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "intfloat/e5-large"})

serving = Bumblebee.Text.TextEmbedding.text_embedding(model_info, tokenizer)

text = "query: Cats are cute."
Nx.Serving.run(serving, text)

#=> %{
#=> embedding: #Nx.Tensor<
#=> f32[1024]
#=> EXLA.Backend<host:0, 0.124908262.1234305056.185360>
#=> [-0.9789889454841614, -0.9814645051956177, -0.5015208125114441, 0.9867952466011047, 0.9917466640472412, -0.5557178258895874, -0.18618212640285492, 0.797040581703186, 0.8922086954116821, 0.7599573135375977, -0.16524426639080048, -0.8740050792694092, 0.9433475732803345, 0.7217797636985779, 0.9437620639801025, 0.4694959223270416, 0.40594056248664856, -0.20143413543701172, 0.7144518494606018, -0.8689796924591064, 0.94001305103302, 0.17163503170013428, -0.9896315932273865, 0.4455447494983673, 0.41139301657676697, 0.01911175064742565, -0.11275406181812286, -0.734498143196106, -0.6410953402519226, -0.628239095211029, -0.2570168673992157, 0.475137323141098, -0.7534396052360535, -0.9492156505584717, -0.17271563410758972, 0.9081271886825562, -0.4851466119289398, -0.9440935254096985, -0.20976334810256958, -0.684502899646759, -0.11581139266490936, 0.17509342730045319, 0.05547652021050453, 0.31042391061782837, 0.955132007598877, -0.35595986247062683, 0.016105204820632935, -0.3154579997062683, 0.9630348682403564, ...]
#=> >
#=> }
"""
@spec text_embedding(
Bumblebee.model_info(),
Bumblebee.Tokenizer.t(),
keyword()
) :: Nx.Serving.t()
defdelegate text_embedding(model_info, tokenizer, opts \\ []),
to: Bumblebee.Text.TextEmbedding

@type fill_mask_input :: String.t()
@type fill_mask_output :: %{predictions: list(fill_mask_prediction())}
@type fill_mask_prediction :: %{score: number(), token: String.t()}
Expand Down
121 changes: 121 additions & 0 deletions lib/bumblebee/text/text_embedding.ex
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
defmodule Bumblebee.Text.TextEmbedding do
@moduledoc false

alias Bumblebee.Shared

def text_embedding(model_info, tokenizer, opts \\ []) do
%{model: model, params: params, spec: _spec} = model_info

opts =
Keyword.validate!(opts, [
:compile,
output_attribute: :pooled_state,
output_pool: nil,
embedding_processor: nil,
defn_options: []
])

output_attribute = opts[:output_attribute]
output_pool = opts[:output_pool]
embedding_processor = opts[:embedding_processor]
compile = opts[:compile]
defn_options = opts[:defn_options]

batch_size = compile[:batch_size]
sequence_length = compile[:sequence_length]

if compile != nil and (batch_size == nil or sequence_length == nil) do
raise ArgumentError,
"expected :compile to be a keyword list specifying :batch_size and :sequence_length, got: #{inspect(compile)}"
end

{_init_fun, encoder} = Axon.build(model)

embedding_fun = fn params, inputs ->
output = encoder.(params, inputs)

output =
if is_map(output) do
output[output_attribute]
else
output
end

output =
case output_pool do
nil ->
output

:mean_pooling ->
input_mask_expanded = Nx.new_axis(inputs["attention_mask"], -1)

output
|> Nx.multiply(input_mask_expanded)
|> Nx.sum(axes: [1])
|> Nx.divide(Nx.sum(input_mask_expanded, axes: [1]))

other ->
raise ArgumentError,
"expected :output_pool to be one of nil or :mean_pooling, got: #{inspect(other)}"
end

output =
case embedding_processor do
nil ->
output

:l2_norm ->
# If the output is the zero vector, return it without normalization
if !Nx.any(output) do
coderrg marked this conversation as resolved.
Show resolved Hide resolved
output
else
Bumblebee.Utils.Nx.normalize(output)
end

other ->
raise ArgumentError,
"expected :embedding_processor to be one of nil or :l2_norm, got: #{inspect(other)}"
end

output
end

Nx.Serving.new(
fn defn_options ->
embedding_fun =
Shared.compile_or_jit(embedding_fun, defn_options, compile != nil, fn ->
inputs = %{
"input_ids" => Nx.template({batch_size, sequence_length}, :u32),
"attention_mask" => Nx.template({batch_size, sequence_length}, :u32)
}

[params, inputs]
end)

fn inputs ->
inputs = Shared.maybe_pad(inputs, batch_size)
embedding_fun.(params, inputs)
end
end,
defn_options
)
|> Nx.Serving.process_options(batch_size: batch_size)
|> Nx.Serving.client_preprocessing(fn input ->
{texts, multi?} = Shared.validate_serving_input!(input, &Shared.validate_string/1)

inputs =
Bumblebee.apply_tokenizer(tokenizer, texts,
length: sequence_length,
return_token_type_ids: false
)

{Nx.Batch.concatenate([inputs]), multi?}
end)
|> Nx.Serving.client_postprocessing(fn embeddings, _metadata, multi? ->
for embedding <- Bumblebee.Utils.Nx.batch_to_list(embeddings) do
%{embedding: embedding}
end
|> Shared.normalize_output(multi?)
end)
end
end
2 changes: 1 addition & 1 deletion lib/bumblebee/utils/nx.ex
Original file line number Diff line number Diff line change
Expand Up @@ -325,7 +325,7 @@ defmodule Bumblebee.Utils.Nx do
Nx.dot(x, [-1], batch_axes, y, [-1], batch_axes)
end

defnp normalize(tensor) do
defn normalize(tensor) do
jonatanklosko marked this conversation as resolved.
Show resolved Hide resolved
norm =
tensor
|> Nx.pow(2)
Expand Down
22 changes: 22 additions & 0 deletions test/bumblebee/text/text_embedding_test.exs
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
defmodule Bumblebee.Text.TextEmbeddingTest do
use ExUnit.Case, async: false

import Bumblebee.TestHelpers

@moduletag model_test_tags()

describe "integration" do
test "returns E5 embedding for a piece of text" do
{:ok, model_info} = Bumblebee.load_model({:hf, "intfloat/e5-large"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "intfloat/e5-large"})

options = [embedding_processor: :l2_norm]

serving = Bumblebee.Text.TextEmbedding.text_embedding(model_info, tokenizer, options)
coderrg marked this conversation as resolved.
Show resolved Hide resolved

text = "query: Cats are cute."

assert Nx.shape(Nx.Serving.run(serving, text).embedding) == {1024}
coderrg marked this conversation as resolved.
Show resolved Hide resolved
end
end
end