-
Notifications
You must be signed in to change notification settings - Fork 23
/
physac-hacked.h
1980 lines (1646 loc) · 79.5 KB
/
physac-hacked.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**********************************************************************************************
*
* Physac v1.1 - 2D Physics library for videogames
*
* DESCRIPTION:
*
* Physac is a small 2D physics engine written in pure C. The engine uses a fixed time-step thread loop
* to simluate physics. A physics step contains the following phases: get collision information,
* apply dynamics, collision solving and position correction. It uses a very simple struct for physic
* bodies with a position vector to be used in any 3D rendering API.
*
* CONFIGURATION:
*
* #define PHYSAC_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define PHYSAC_DEBUG
* Show debug traces log messages about physic bodies creation/destruction, physic system errors,
* some calculations results and NULL reference exceptions.
*
* #define PHYSAC_AVOID_TIMMING_SYSTEM
* Disables internal timming system, used by UpdatePhysics() to launch timmed physic steps,
* it allows just running UpdatePhysics() automatically on a separate thread at a desired time step.
* In case physics steps update needs to be controlled by user with a custom timming mechanism,
* just define this flag and the internal timming mechanism will be avoided, in that case,
* timming libraries are neither required by the module.
*
* #define PHYSAC_MALLOC()
* #define PHYSAC_CALLOC()
* #define PHYSAC_FREE()
* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
*
* COMPILATION:
*
* Use the following code to compile with GCC:
* gcc -o $(NAME_PART).exe $(FILE_NAME) -s -static -lraylib -lopengl32 -lgdi32 -lwinmm -std=c99
*
* VERSIONS HISTORY:
* 1.1 (20-Jan-2021) @raysan5: Library general revision
* Removed threading system (up to the user)
* Support MSVC C++ compilation using CLITERAL()
* Review DEBUG mechanism for TRACELOG() and all TRACELOG() messages
* Review internal variables/functions naming for consistency
* Allow option to avoid internal timming system, to allow app manage the steps
* 1.0 (12-Jun-2017) First release of the library
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2016-2021 Victor Fisac (@victorfisac) and Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#if !defined(PHYSAC_H)
#define PHYSAC_H
#ifndef PHYSACDEF
#define PHYSACDEF // We are building or using physac as a static library
#endif
// Allow custom memory allocators
#ifndef PHYSAC_MALLOC
#define PHYSAC_MALLOC(size) malloc(size)
#endif
#ifndef PHYSAC_CALLOC
#define PHYSAC_CALLOC(size, n) calloc(size, n)
#endif
#ifndef PHYSAC_FREE
#define PHYSAC_FREE(ptr) free(ptr)
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define PHYSAC_MAX_BODIES 64 // Maximum number of physic bodies supported
#define PHYSAC_MAX_MANIFOLDS 4096 // Maximum number of physic bodies interactions (64x64)
#define PHYSAC_MAX_VERTICES 24 // Maximum number of vertex for polygons shapes
#define PHYSAC_DEFAULT_CIRCLE_VERTICES 24 // Default number of vertices for circle shapes
#define PHYSAC_COLLISION_ITERATIONS 100
#define PHYSAC_PENETRATION_ALLOWANCE 0.05f
#define PHYSAC_PENETRATION_CORRECTION 0.4f
#define PHYSAC_PI 3.14159265358979323846f
#define PHYSAC_DEG2RAD (PHYSAC_PI/180.0f)
//----------------------------------------------------------------------------------
// Data Types Structure Definition
//----------------------------------------------------------------------------------
#if defined(__STDC__) && __STDC_VERSION__ >= 199901L
#include <stdbool.h>
#endif
typedef enum PhysicsShapeType { PHYSICS_CIRCLE = 0, PHYSICS_POLYGON } PhysicsShapeType;
// Previously defined to be used in PhysicsShape struct as circular dependencies
//typedef struct PhysicsBody*Data PhysicsBody*;
#if !defined(RL_VECTOR2_TYPE)
// Vector2 type
typedef struct Vector2 {
float x;
float y;
} Vector2;
#endif
// Matrix2x2 type (used for polygon shape rotation matrix)
typedef struct Matrix2x2 {
float m00;
float m01;
float m10;
float m11;
} Matrix2x2;
typedef struct PhysicsVertexData {
unsigned int vertexCount; // Vertex count (positions and normals)
Vector2 positions[PHYSAC_MAX_VERTICES]; // Vertex positions vectors
Vector2 normals[PHYSAC_MAX_VERTICES]; // Vertex normals vectors
} PhysicsVertexData;
typedef struct PhysicsBody PhysicsBody;
typedef struct PhysicsShape {
PhysicsShapeType type; // Shape type (circle or polygon)
PhysicsBody* body; // Shape physics body data pointer
PhysicsVertexData vertexData; // Shape vertices data (used for polygon shapes)
float radius; // Shape radius (used for circle shapes)
Matrix2x2 transform; // Vertices transform matrix 2x2
} PhysicsShape;
typedef struct PhysicsBody {
unsigned int id; // Unique identifier
bool enabled; // Enabled dynamics state (collisions are calculated anyway)
Vector2 position; // Physics body shape pivot
Vector2 velocity; // Current linear velocity applied to position
Vector2 force; // Current linear force (reset to 0 every step)
float angularVelocity; // Current angular velocity applied to orient
float torque; // Current angular force (reset to 0 every step)
float orient; // Rotation in radians
float inertia; // Moment of inertia
float inverseInertia; // Inverse value of inertia
float mass; // Physics body mass
float inverseMass; // Inverse value of mass
float staticFriction; // Friction when the body has not movement (0 to 1)
float dynamicFriction; // Friction when the body has movement (0 to 1)
float restitution; // Restitution coefficient of the body (0 to 1)
bool useGravity; // Apply gravity force to dynamics
bool isGrounded; // Physics grounded on other body state
bool freezeOrient; // Physics rotation constraint
PhysicsShape shape; // Physics body shape information (type, radius, vertices, transform)
} PhysicsBody;
typedef struct PhysicsManifoldData {
unsigned int id; // Unique identifier
PhysicsBody* bodyA; // Manifold first physics body reference
PhysicsBody* bodyB; // Manifold second physics body reference
float penetration; // Depth of penetration from collision
Vector2 normal; // Normal direction vector from 'a' to 'b'
Vector2 contacts[2]; // Points of contact during collision
unsigned int contactsCount; // Current collision number of contacts
float restitution; // Mixed restitution during collision
float dynamicFriction; // Mixed dynamic friction during collision
float staticFriction; // Mixed static friction during collision
} PhysicsManifoldData, *PhysicsManifold;
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
#if defined(__cplusplus)
extern "C" { // Prevents name mangling of functions
#endif
// Physics system management
PHYSACDEF void InitPhysics(void); // Initializes physics system
PHYSACDEF void UpdatePhysics(void); // Update physics system
PHYSACDEF void ResetPhysics(void); // Reset physics system (global variables)
PHYSACDEF void ClosePhysics(void); // Close physics system and unload used memory
PHYSACDEF void SetPhysicsTimeStep(double delta); // Sets physics fixed time step in milliseconds. 1.666666 by default
PHYSACDEF void SetPhysicsGravity(float x, float y); // Sets physics global gravity force
// Physic body creation/destroy
PHYSACDEF PhysicsBody* CreatePhysicsBodyCircle(Vector2 pos, float radius, float density); // Creates a new circle physics body with generic parameters
PHYSACDEF PhysicsBody* CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density); // Creates a new rectangle physics body with generic parameters
PHYSACDEF PhysicsBody* CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density); // Creates a new polygon physics body with generic parameters
PHYSACDEF void DestroyPhysicsBody(PhysicsBody* body); // Destroy a physics body
// Physic body forces
PHYSACDEF void PhysicsAddForce(PhysicsBody* body, Vector2 force); // Adds a force to a physics body
PHYSACDEF void PhysicsAddTorque(PhysicsBody* body, float amount); // Adds an angular force to a physics body
PHYSACDEF void PhysicsShatter(PhysicsBody* body, Vector2 position, float force); // Shatters a polygon shape physics body to little physics bodies with explosion force
PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody* body, float radians); // Sets physics body shape transform based on radians parameter
// Query physics info
PHYSACDEF PhysicsBody* GetPhysicsBody(int index); // Returns a physics body of the bodies pool at a specific index
PHYSACDEF int GetPhysicsBodiesCount(void); // Returns the current amount of created physics bodies
PHYSACDEF int GetPhysicsShapeType(int index); // Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
PHYSACDEF int GetPhysicsShapeVerticesCount(int index); // Returns the amount of vertices of a physics body shape
PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody* body, int vertex); // Returns transformed position of a body shape (body position + vertex transformed position)
#if defined(__cplusplus)
}
#endif
#endif // PHYSAC_H
/***********************************************************************************
*
* PHYSAC IMPLEMENTATION
*
************************************************************************************/
#if defined(PHYSAC_IMPLEMENTATION)
// Support TRACELOG macros
#if defined(PHYSAC_DEBUG)
#include <stdio.h> // Required for: printf()
#define TRACELOG(...) printf(__VA_ARGS__)
#else
#define TRACELOG(...) (void)0;
#endif
#include <stdlib.h> // Required for: malloc(), calloc(), free()
#include <math.h> // Required for: cosf(), sinf(), fabs(), sqrtf()
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Time management functionality
#include <time.h> // Required for: time(), clock_gettime()
#if defined(_WIN32)
#if defined(__cplusplus)
extern "C" { // Prevents name mangling of functions
#endif
// Functions required to query time on Windows
//int __stdcall QueryPerformanceCounter(unsigned long long int *lpPerformanceCount);
//int __stdcall QueryPerformanceFrequency(unsigned long long int *lpFrequency);
#if defined(__cplusplus)
}
#endif
#endif
#if defined(__linux__) || defined(__FreeBSD__)
#if _POSIX_C_SOURCE < 199309L
#undef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 199309L // Required for CLOCK_MONOTONIC if compiled with c99 without gnu ext.
#endif
#include <sys/time.h> // Required for: timespec
#endif
#if defined(__APPLE__) // macOS also defines __MACH__
#include <mach/mach_time.h> // Required for: mach_absolute_time()
#endif
#endif
// NOTE: MSVC C++ compiler does not support compound literals (C99 feature)
// Plain structures in C++ (without constructors) can be initialized from { } initializers.
#if defined(__cplusplus)
#define CLITERAL(type) type
#else
#define CLITERAL(type) (type)
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define PHYSAC_MIN(a,b) (((a)<(b))?(a):(b))
#define PHYSAC_MAX(a,b) (((a)>(b))?(a):(b))
#define PHYSAC_FLT_MAX 3.402823466e+38f
#define PHYSAC_EPSILON 0.000001f
#define PHYSAC_K 1.0f/3.0f
#define PHYSAC_VECTOR_ZERO CLITERAL(Vector2){ 0.0f, 0.0f }
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static double deltaTime = 1.0/60.0/10.0 * 1000; // Delta time in milliseconds used for physics steps
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Time measure variables
static double baseClockTicks = 0.0; // Offset clock ticks for MONOTONIC clock
static unsigned long long int frequency = 0; // Hi-res clock frequency
static double startTime = 0.0; // Start time in milliseconds
static double currentTime = 0.0; // Current time in milliseconds
#endif
// Physics system configuration
static PhysicsBody* bodies[PHYSAC_MAX_BODIES]; // Physics bodies pointers array
static unsigned int physicsBodiesCount = 0; // Physics world current bodies counter
static PhysicsManifold contacts[PHYSAC_MAX_MANIFOLDS]; // Physics bodies pointers array
static unsigned int physicsManifoldsCount = 0; // Physics world current manifolds counter
static Vector2 gravityForce = { 0.0f, 9.81f }; // Physics world gravity force
// Utilities variables
static unsigned int usedMemory = 0; // Total allocated dynamic memory
//----------------------------------------------------------------------------------
// Module Internal Functions Declaration
//----------------------------------------------------------------------------------
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Timming measure functions
static void InitTimerHiRes(void); // Initializes hi-resolution MONOTONIC timer
static unsigned long long int PH_GetClockTicks(void); // Get hi-res MONOTONIC time measure in mseconds
static double PH_GetCurrentTime(void); // Get current time measure in milliseconds
#endif
static void UpdatePhysicsStep(void); // Update physics step (dynamics, collisions and position corrections)
static int FindAvailableBodyIndex(); // Finds a valid index for a new physics body initialization
static int FindAvailableManifoldIndex(); // Finds a valid index for a new manifold initialization
static PhysicsVertexData CreateDefaultPolygon(float radius, int sides); // Creates a random polygon shape with max vertex distance from polygon pivot
static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size); // Creates a rectangle polygon shape based on a min and max positions
static void InitializePhysicsManifolds(PhysicsManifold manifold); // Initializes physics manifolds to solve collisions
static PhysicsManifold CreatePhysicsManifold(PhysicsBody* a, PhysicsBody* b); // Creates a new physics manifold to solve collision
static void DestroyPhysicsManifold(PhysicsManifold manifold); // Unitializes and destroys a physics manifold
static void SolvePhysicsManifold(PhysicsManifold manifold); // Solves a created physics manifold between two physics bodies
static void SolveCircleToCircle(PhysicsManifold manifold); // Solves collision between two circle shape physics bodies
static void SolveCircleToPolygon(PhysicsManifold manifold); // Solves collision between a circle to a polygon shape physics bodies
static void SolvePolygonToCircle(PhysicsManifold manifold); // Solves collision between a polygon to a circle shape physics bodies
static void SolvePolygonToPolygon(PhysicsManifold manifold); // Solves collision between two polygons shape physics bodies
static void IntegratePhysicsForces(PhysicsBody* body); // Integrates physics forces into velocity
static void IntegratePhysicsVelocity(PhysicsBody* body); // Integrates physics velocity into position and forces
static void IntegratePhysicsImpulses(PhysicsManifold manifold); // Integrates physics collisions impulses to solve collisions
static void CorrectPhysicsPositions(PhysicsManifold manifold); // Corrects physics bodies positions based on manifolds collision information
static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index); // Finds two polygon shapes incident face
static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB); // Finds polygon shapes axis least penetration
// Math required functions
static Vector2 MathVector2Product(Vector2 vector, float value); // Returns the product of a vector and a value
static float MathVector2CrossProduct(Vector2 v1, Vector2 v2); // Returns the cross product of two vectors
static float MathVector2SqrLen(Vector2 vector); // Returns the len square root of a vector
static float MathVector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two vectors
static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2); // Returns the square root of distance between two vectors
static void MathVector2Normalize(Vector2 *vector); // Returns the normalized values of a vector
static Vector2 MathVector2Add(Vector2 v1, Vector2 v2); // Returns the sum of two given vectors
static Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2); // Returns the subtract of two given vectors
static Matrix2x2 MathMatFromRadians(float radians); // Returns a matrix 2x2 from a given radians value
static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix); // Returns the transpose of a given matrix 2x2
static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector); // Returns product between matrix 2x2 and vector
static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip); // Returns clipping value based on a normal and two faces
static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3); // Returns the barycenter of a triangle given by 3 points
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Initializes physics values, pointers and creates physics loop thread
void InitPhysics(void)
{
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Initialize high resolution timer
InitTimerHiRes();
#endif
TRACELOG("[PHYSAC] Physics module initialized successfully\n");
}
// Sets physics global gravity force
void SetPhysicsGravity(float x, float y)
{
gravityForce.x = x;
gravityForce.y = y;
}
// Creates a new circle physics body with generic parameters
PhysicsBody* CreatePhysicsBodyCircle(Vector2 pos, float radius, float density)
{
PhysicsBody* body = CreatePhysicsBodyPolygon(pos, radius, PHYSAC_DEFAULT_CIRCLE_VERTICES, density);
return body;
}
// Creates a new rectangle physics body with generic parameters
PhysicsBody* CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density)
{
// NOTE: Make sure body data is initialized to 0
PhysicsBody* body = (PhysicsBody*)PHYSAC_CALLOC(sizeof(PhysicsBody), 1);
usedMemory += sizeof(PhysicsBody);
int id = FindAvailableBodyIndex();
if (id != -1)
{
// Initialize new body with generic values
body->id = id;
body->enabled = true;
body->position = pos;
body->shape.type = PHYSICS_POLYGON;
body->shape.body = body;
body->shape.transform = MathMatFromRadians(0.0f);
body->shape.vertexData = CreateRectanglePolygon(pos, CLITERAL(Vector2){ width, height });
// Calculate centroid and moment of inertia
Vector2 center = { 0.0f, 0.0f };
float area = 0.0f;
float inertia = 0.0f;
for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
{
// Triangle vertices, third vertex implied as (0, 0)
Vector2 p1 = body->shape.vertexData.positions[i];
unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
Vector2 p2 = body->shape.vertexData.positions[nextIndex];
float D = MathVector2CrossProduct(p1, p2);
float triangleArea = D/2;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
}
center.x *= 1.0f/area;
center.y *= 1.0f/area;
// Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
// Note: this is not really necessary
for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
{
body->shape.vertexData.positions[i].x -= center.x;
body->shape.vertexData.positions[i].y -= center.y;
}
body->mass = density*area;
body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
body->inertia = density*inertia;
body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
body->staticFriction = 0.4f;
body->dynamicFriction = 0.2f;
body->restitution = 0.0f;
body->useGravity = true;
body->isGrounded = false;
body->freezeOrient = false;
// Add new body to bodies pointers array and update bodies count
bodies[physicsBodiesCount] = body;
physicsBodiesCount++;
TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
}
else TRACELOG("[PHYSAC] Physic body could not be created, PHYSAC_MAX_BODIES reached\n");
return body;
}
// Creates a new polygon physics body with generic parameters
PhysicsBody* CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density)
{
PhysicsBody* body = (PhysicsBody*)PHYSAC_MALLOC(sizeof(PhysicsBody));
usedMemory += sizeof(PhysicsBody);
int id = FindAvailableBodyIndex();
if (id != -1)
{
// Initialize new body with generic values
body->id = id;
body->enabled = true;
body->position = pos;
body->velocity = PHYSAC_VECTOR_ZERO;
body->force = PHYSAC_VECTOR_ZERO;
body->angularVelocity = 0.0f;
body->torque = 0.0f;
body->orient = 0.0f;
body->shape.type = PHYSICS_POLYGON;
body->shape.body = body;
body->shape.transform = MathMatFromRadians(0.0f);
body->shape.vertexData = CreateDefaultPolygon(radius, sides);
// Calculate centroid and moment of inertia
Vector2 center = { 0.0f, 0.0f };
float area = 0.0f;
float inertia = 0.0f;
for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
{
// Triangle vertices, third vertex implied as (0, 0)
Vector2 position1 = body->shape.vertexData.positions[i];
unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
Vector2 position2 = body->shape.vertexData.positions[nextIndex];
float cross = MathVector2CrossProduct(position1, position2);
float triangleArea = cross/2;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
center.x += triangleArea*PHYSAC_K*(position1.x + position2.x);
center.y += triangleArea*PHYSAC_K*(position1.y + position2.y);
float intx2 = position1.x*position1.x + position2.x*position1.x + position2.x*position2.x;
float inty2 = position1.y*position1.y + position2.y*position1.y + position2.y*position2.y;
inertia += (0.25f*PHYSAC_K*cross)*(intx2 + inty2);
}
center.x *= 1.0f/area;
center.y *= 1.0f/area;
// Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
// Note: this is not really necessary
for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
{
body->shape.vertexData.positions[i].x -= center.x;
body->shape.vertexData.positions[i].y -= center.y;
}
body->mass = density*area;
body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
body->inertia = density*inertia;
body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
body->staticFriction = 0.4f;
body->dynamicFriction = 0.2f;
body->restitution = 0.0f;
body->useGravity = true;
body->isGrounded = false;
body->freezeOrient = false;
// Add new body to bodies pointers array and update bodies count
bodies[physicsBodiesCount] = body;
physicsBodiesCount++;
TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
}
else TRACELOG("[PHYSAC] Physics body could not be created, PHYSAC_MAX_BODIES reached\n");
return body;
}
// Adds a force to a physics body
void PhysicsAddForce(PhysicsBody* body, Vector2 force)
{
if (body != NULL) body->force = MathVector2Add(body->force, force);
}
// Adds an angular force to a physics body
void PhysicsAddTorque(PhysicsBody* body, float amount)
{
if (body != NULL) body->torque += amount;
}
// Shatters a polygon shape physics body to little physics bodies with explosion force
void PhysicsShatter(PhysicsBody* body, Vector2 position, float force)
{
if (body != NULL)
{
if (body->shape.type == PHYSICS_POLYGON)
{
PhysicsVertexData vertexData = body->shape.vertexData;
bool collision = false;
for (unsigned int i = 0; i < vertexData.vertexCount; i++)
{
Vector2 positionA = body->position;
Vector2 positionB = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[i]));
unsigned int nextIndex = (((i + 1) < vertexData.vertexCount) ? (i + 1) : 0);
Vector2 positionC = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[nextIndex]));
// Check collision between each triangle
float alpha = ((positionB.y - positionC.y)*(position.x - positionC.x) + (positionC.x - positionB.x)*(position.y - positionC.y))/
((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
float beta = ((positionC.y - positionA.y)*(position.x - positionC.x) + (positionA.x - positionC.x)*(position.y - positionC.y))/
((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
float gamma = 1.0f - alpha - beta;
if ((alpha > 0.0f) && (beta > 0.0f) & (gamma > 0.0f))
{
collision = true;
break;
}
}
if (collision)
{
int count = vertexData.vertexCount;
Vector2 bodyPos = body->position;
Vector2 *vertices = (Vector2 *)PHYSAC_MALLOC(sizeof(Vector2)*count);
Matrix2x2 trans = body->shape.transform;
for (int i = 0; i < count; i++) vertices[i] = vertexData.positions[i];
// Destroy shattered physics body
DestroyPhysicsBody(body);
for (int i = 0; i < count; i++)
{
int nextIndex = (((i + 1) < count) ? (i + 1) : 0);
Vector2 center = MathTriangleBarycenter(vertices[i], vertices[nextIndex], PHYSAC_VECTOR_ZERO);
center = MathVector2Add(bodyPos, center);
Vector2 offset = MathVector2Subtract(center, bodyPos);
PhysicsBody* body = CreatePhysicsBodyPolygon(center, 10, 3, 10); // Create polygon physics body with relevant values
PhysicsVertexData vertexData = { 0 };
vertexData.vertexCount = 3;
vertexData.positions[0] = MathVector2Subtract(vertices[i], offset);
vertexData.positions[1] = MathVector2Subtract(vertices[nextIndex], offset);
vertexData.positions[2] = MathVector2Subtract(position, center);
// Separate vertices to avoid unnecessary physics collisions
vertexData.positions[0].x *= 0.95f;
vertexData.positions[0].y *= 0.95f;
vertexData.positions[1].x *= 0.95f;
vertexData.positions[1].y *= 0.95f;
vertexData.positions[2].x *= 0.95f;
vertexData.positions[2].y *= 0.95f;
// Calculate polygon faces normals
for (unsigned int j = 0; j < vertexData.vertexCount; j++)
{
unsigned int nextVertex = (((j + 1) < vertexData.vertexCount) ? (j + 1) : 0);
Vector2 face = MathVector2Subtract(vertexData.positions[nextVertex], vertexData.positions[j]);
vertexData.normals[j] = CLITERAL(Vector2){ face.y, -face.x };
MathVector2Normalize(&vertexData.normals[j]);
}
// Apply computed vertex data to new physics body shape
body->shape.vertexData = vertexData;
body->shape.transform = trans;
// Calculate centroid and moment of inertia
center = PHYSAC_VECTOR_ZERO;
float area = 0.0f;
float inertia = 0.0f;
for (unsigned int j = 0; j < body->shape.vertexData.vertexCount; j++)
{
// Triangle vertices, third vertex implied as (0, 0)
Vector2 p1 = body->shape.vertexData.positions[j];
unsigned int nextVertex = (((j + 1) < body->shape.vertexData.vertexCount) ? (j + 1) : 0);
Vector2 p2 = body->shape.vertexData.positions[nextVertex];
float D = MathVector2CrossProduct(p1, p2);
float triangleArea = D/2;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
}
center.x *= 1.0f/area;
center.y *= 1.0f/area;
body->mass = area;
body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
body->inertia = inertia;
body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
// Calculate explosion force direction
Vector2 pointA = body->position;
Vector2 pointB = MathVector2Subtract(vertexData.positions[1], vertexData.positions[0]);
pointB.x /= 2.0f;
pointB.y /= 2.0f;
Vector2 forceDirection = MathVector2Subtract(MathVector2Add(pointA, MathVector2Add(vertexData.positions[0], pointB)), body->position);
MathVector2Normalize(&forceDirection);
forceDirection.x *= force;
forceDirection.y *= force;
// Apply force to new physics body
PhysicsAddForce(body, forceDirection);
}
PHYSAC_FREE(vertices);
}
}
}
else TRACELOG("[PHYSAC] WARNING: PhysicsShatter: NULL physic body\n");
}
// Returns the current amount of created physics bodies
int GetPhysicsBodiesCount(void)
{
return physicsBodiesCount;
}
// Returns a physics body of the bodies pool at a specific index
PhysicsBody* GetPhysicsBody(int index)
{
PhysicsBody* body = NULL;
if (index < (int)physicsBodiesCount)
{
body = bodies[index];
if (body == NULL) TRACELOG("[PHYSAC] WARNING: GetPhysicsBody: NULL physic body\n");
}
else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
return body;
}
// Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
int GetPhysicsShapeType(int index)
{
int result = -1;
if (index < (int)physicsBodiesCount)
{
PhysicsBody* body = bodies[index];
if (body != NULL) result = body->shape.type;
else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeType: NULL physic body\n");
}
else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
return result;
}
// Returns the amount of vertices of a physics body shape
int GetPhysicsShapeVerticesCount(int index)
{
int result = 0;
if (index < (int)physicsBodiesCount)
{
PhysicsBody* body = bodies[index];
if (body != NULL)
{
switch (body->shape.type)
{
case PHYSICS_CIRCLE: result = PHYSAC_DEFAULT_CIRCLE_VERTICES; break;
case PHYSICS_POLYGON: result = body->shape.vertexData.vertexCount; break;
default: break;
}
}
else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVerticesCount: NULL physic body\n");
}
else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
return result;
}
// Returns transformed position of a body shape (body position + vertex transformed position)
Vector2 GetPhysicsShapeVertex(PhysicsBody* body, int vertex)
{
Vector2 position = { 0.0f, 0.0f };
if (body != NULL)
{
switch (body->shape.type)
{
case PHYSICS_CIRCLE:
{
position.x = body->position.x + cosf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
position.y = body->position.y + sinf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
} break;
case PHYSICS_POLYGON:
{
PhysicsVertexData vertexData = body->shape.vertexData;
position = MathVector2Add(body->position, MathMatVector2Product(body->shape.transform, vertexData.positions[vertex]));
} break;
default: break;
}
}
else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVertex: NULL physic body\n");
return position;
}
// Sets physics body shape transform based on radians parameter
void SetPhysicsBodyRotation(PhysicsBody* body, float radians)
{
if (body != NULL)
{
body->orient = radians;
if (body->shape.type == PHYSICS_POLYGON) body->shape.transform = MathMatFromRadians(radians);
}
}
// Unitializes and destroys a physics body
void DestroyPhysicsBody(PhysicsBody* body)
{
if (body != NULL)
{
int id = body->id;
int index = -1;
for (unsigned int i = 0; i < physicsBodiesCount; i++)
{
if (bodies[i]->id == id)
{
index = i;
break;
}
}
if (index == -1)
{
TRACELOG("[PHYSAC] WARNING: Requested body (id: %i) can not be found\n", id);
return; // Prevent access to index -1
}
// Free body allocated memory
PHYSAC_FREE(body);
usedMemory -= sizeof(PhysicsBody);
bodies[index] = NULL;
// Reorder physics bodies pointers array and its catched index
for (unsigned int i = index; i < physicsBodiesCount; i++)
{
if ((i + 1) < physicsBodiesCount) bodies[i] = bodies[i + 1];
}
// Update physics bodies count
physicsBodiesCount--;
TRACELOG("[PHYSAC] Physic body destroyed successfully (id: %i)\n", id);
}
else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsBody: NULL physic body\n");
}
// Destroys created physics bodies and manifolds and resets global values
void ResetPhysics(void)
{
if (physicsBodiesCount > 0)
{
// Unitialize physics bodies dynamic memory allocations
for (int i = physicsBodiesCount - 1; i >= 0; i--)
{
PhysicsBody* body = bodies[i];
if (body != NULL)
{
PHYSAC_FREE(body);
bodies[i] = NULL;
usedMemory -= sizeof(PhysicsBody);
}
}
physicsBodiesCount = 0;
}
if (physicsManifoldsCount > 0)
{
// Unitialize physics manifolds dynamic memory allocations
for (int i = physicsManifoldsCount - 1; i >= 0; i--)
{
PhysicsManifold manifold = contacts[i];
if (manifold != NULL)
{
PHYSAC_FREE(manifold);
contacts[i] = NULL;
usedMemory -= sizeof(PhysicsManifoldData);
}
}
physicsManifoldsCount = 0;
}
TRACELOG("[PHYSAC] Physics module reseted successfully\n");
}
// Unitializes physics pointers and exits physics loop thread
void ClosePhysics(void)
{
// Unitialize physics manifolds dynamic memory allocations
if (physicsManifoldsCount > 0)
{
for (int i = physicsManifoldsCount - 1; i >= 0; i--) DestroyPhysicsManifold(contacts[i]);
}
// Unitialize physics bodies dynamic memory allocations
if (physicsBodiesCount > 0)
{
for (int i = physicsBodiesCount - 1; i >= 0; i--) DestroyPhysicsBody(bodies[i]);
}
// Trace log info
if ((physicsBodiesCount > 0) || (usedMemory != 0))
{
TRACELOG("[PHYSAC] WARNING: Physics module closed with unallocated bodies (BODIES: %i, MEMORY: %i bytes)\n", physicsBodiesCount, usedMemory);
}
else if ((physicsManifoldsCount > 0) || (usedMemory != 0))
{
TRACELOG("[PHYSAC] WARNING: Pysics module closed with unallocated manifolds (MANIFOLDS: %i, MEMORY: %i bytes)\n", physicsManifoldsCount, usedMemory);
}
else TRACELOG("[PHYSAC] Physics module closed successfully\n");
}
// Update physics system
// Physics steps are launched at a fixed time step if enabled
void UpdatePhysics(void)
{
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
static double deltaTimeAccumulator = 0.0;
// Calculate current time (ms)
currentTime = PH_GetCurrentTime();
// Calculate current delta time (ms)
const double delta = currentTime - startTime;
// Store the time elapsed since the last frame began
deltaTimeAccumulator += delta;
// Fixed time stepping loop
while (deltaTimeAccumulator >= deltaTime)
{
UpdatePhysicsStep();
deltaTimeAccumulator -= deltaTime;
}
// Record the starting of this frame
startTime = currentTime;
#else
UpdatePhysicsStep();
#endif
}
void SetPhysicsTimeStep(double delta)
{
deltaTime = delta;
}
//----------------------------------------------------------------------------------
// Module Internal Functions Definition
//----------------------------------------------------------------------------------
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Initializes hi-resolution MONOTONIC timer
static void InitTimerHiRes(void)
{
#if defined(_WIN32)
QueryPerformanceFrequency((LARGE_INTEGER *) &frequency);
#endif
#if defined(__EMSCRIPTEN__) || defined(__linux__)
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now) == 0) frequency = 1000000000;
#endif
#if defined(__APPLE__)
mach_timebase_info_data_t timebase;
mach_timebase_info(&timebase);
frequency = (timebase.denom*1e9)/timebase.numer;
#endif
baseClockTicks = (double)PH_GetClockTicks(); // Get MONOTONIC clock time offset
startTime = PH_GetCurrentTime(); // Get current time in milliseconds
}
// Get hi-res MONOTONIC time measure in clock ticks
static unsigned long long int PH_GetClockTicks(void)
{
unsigned long long int value = 0;
#if defined(_WIN32)
QueryPerformanceCounter((LARGE_INTEGER *) &value);
#endif
#if defined(__linux__)
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
value = (unsigned long long int)now.tv_sec*(unsigned long long int)1000000000 + (unsigned long long int)now.tv_nsec;
#endif
#if defined(__APPLE__)
value = mach_absolute_time();
#endif
return value;
}
// Get current time in milliseconds
static double PH_GetCurrentTime(void)
{
return (double)(PH_GetClockTicks() - baseClockTicks)/frequency*1000;
}
#endif // !PHYSAC_AVOID_TIMMING_SYSTEM
// Update physics step (dynamics, collisions and position corrections)