Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[tune](deps): Bump scikit-learn from 0.22.2 to 0.24.0 in /python/requirements #3

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github Jan 11, 2021

Bumps scikit-learn from 0.22.2 to 0.24.0.

Release notes

Sourced from scikit-learn's releases.

scikit-learn 0.24.0

We're happy to announce the 0.24 release. You can read the release highlights under https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_24_0.html and the long version of the change log under https://scikit-learn.org/stable/whats_new/v0.24.html#version-0-24-0

This version supports Python versions 3.6 to 3.9.

scikit-learn 0.23.2

We're happy to announce the 0.23.2 release with several bugfixes:

You can see the changelog here: https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-2

You can upgrade with pip as usual:

pip install -U scikit-learn

The conda-forge builds will be available shortly, which you can then install using:

conda install -c conda-forge scikit-learn

scikit-learn 0.23.1

We're happy to announce the 0.23.1 release which fixes a few issues affecting many users, namely: K-Means should be faster for small sample sizes, and the representation of third-party estimators was fixed.

You can check this version out using:

    pip install -U scikit-learn

You can see the changelog here: https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-1 The conda-forge builds will be available shortly, which you can then install using:

    conda install -c conda-forge scikit-learn

scikit-learn 0.23.0

We're happy to announce the 0.23 release. You can read the release highlights under https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_0_23_0.html and the long version of the change log under https://scikit-learn.org/stable/whats_new/v0.23.html#version-0-23-0

This version supports Python versions 3.6 to 3.8.

Scikit-learn 0.22.2.post1

We're happy to announce the 0.22.2.post1 bugfix release.

The 0.22.2.post1 release includes a packaging fix for the source distribution but the content of the packages is otherwise identical to the content of the wheels with the 0.22.2 version (without the .post1 suffix).

Change log under https://scikit-learn.org/stable/whats_new/v0.22.html#changes-0-22-2.

This version supports Python versions 3.5 to 3.8.

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

@dependabot @github
Copy link
Author

dependabot bot commented on behalf of github Jan 15, 2021

Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting @dependabot rebase.

1 similar comment
@dependabot @github
Copy link
Author

dependabot bot commented on behalf of github Jan 19, 2021

Dependabot tried to update this pull request, but something went wrong. We're looking into it, but in the meantime you can retry the update by commenting @dependabot rebase.

@dependabot @github
Copy link
Author

dependabot bot commented on behalf of github Jan 26, 2021

Looks like scikit-learn is no longer being updated by Dependabot, so this is no longer needed.

@dependabot dependabot bot closed this Jan 26, 2021
@dependabot dependabot bot deleted the dependabot/pip/python/requirements/scikit-learn-0.24.0 branch January 26, 2021 19:50
edoakes pushed a commit that referenced this pull request Apr 14, 2022
…ray-project#23821)

This PR refactors `LazyBlockList` in service of out-of-band serialization (see [mono-PR](ray-project#22616)) and is a precursor to an execution plan refactor (PR #2) and adding the actual out-of-band serialization APIs (PR #3). The following is included in this refactor:
1. `ReadTask`s are now a first-class concept, replacing calls;
2. read stage progress tracking is consolidated into `LazyBlockList._get_blocks_with_metadta()` and more of the read task complexity, e.g. the read remote function, was pushed into `LazyBlockList` to make `ray.data.read_datasource()` simpler;
3. we are a bit smarter with how we progressively launch tasks and fetch and cache metadata, including fetching the metadata for read tasks in `.iter_blocks_with_metadata()` instead of relying on the pre-read task metadata (which will be less accurate), and we also fix some small bugs in the lazy ramp-up around progressive metadata fetching.

(1) is the most important item for supporting out-of-band serialization and fundamentally changes the `LazyBlockList` data model. This is required since we need to be able to reference the underlying read tasks when rewriting read stages during optimization and when serializing the lineage of the Dataset. See the [mono-PR](ray-project#22616) for more context.

Other changes:
1. Changed stats actor to a global named actor singleton in order to obviate the need for serializing the actor handle with the Dataset stats; without this, we were encountering serialization failures.
edoakes pushed a commit that referenced this pull request Aug 5, 2022
We encountered SIGSEGV when running Python test `python/ray/tests/test_failure_2.py::test_list_named_actors_timeout`. The stack is:

```
#0  0x00007fffed30f393 in std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string(std::string const&) ()
   from /lib64/libstdc++.so.6
#1  0x00007fffee707649 in ray::RayLog::GetLoggerName() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#2  0x00007fffee70aa90 in ray::SpdLogMessage::Flush() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#3  0x00007fffee70af28 in ray::RayLog::~RayLog() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#4  0x00007fffee2b570d in ray::asio::testing::(anonymous namespace)::DelayManager::Init() [clone .constprop.0] ()
   from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#5  0x00007fffedd0d95a in _GLOBAL__sub_I_asio_chaos.cc () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#6  0x00007ffff7fe282a in call_init.part () from /lib64/ld-linux-x86-64.so.2
#7  0x00007ffff7fe2931 in _dl_init () from /lib64/ld-linux-x86-64.so.2
#8  0x00007ffff7fe674c in dl_open_worker () from /lib64/ld-linux-x86-64.so.2
#9  0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6
#10 0x00007ffff7fe5ffe in _dl_open () from /lib64/ld-linux-x86-64.so.2
#11 0x00007ffff7d5f39c in dlopen_doit () from /lib64/libdl.so.2
#12 0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6
#13 0x00007ffff7b82f13 in _dl_catch_error () from /lib64/libc.so.6
#14 0x00007ffff7d5fb09 in _dlerror_run () from /lib64/libdl.so.2
#15 0x00007ffff7d5f42a in dlopen@@GLIBC_2.2.5 () from /lib64/libdl.so.2
#16 0x00007fffef04d330 in py_dl_open (self=<optimized out>, args=<optimized out>)
    at /tmp/python-build.20220507135524.257789/Python-3.7.11/Modules/_ctypes/callproc.c:1369
```

The root cause is that when loading `_raylet.so`, `static DelayManager _delay_manager` is initialized and `RAY_LOG(ERROR) << "RAY_testing_asio_delay_us is set to " << delay_env;` is executed. However, the static variables declared in `logging.cc` are not initialized yet (in this case, `std::string RayLog::logger_name_ = "ray_log_sink"`).

It's better not to rely on the initialization order of static variables in different compilation units because it's not guaranteed. I propose to change all `RAY_LOG`s to `std::cerr` in `DelayManager::Init()`.

The crash happens in Ant's internal codebase. Not sure why this test case passes in the community version though.

BTW, I've tried different approaches:

1. Using a static local variable in `get_delay_us` and remove the global variable. This doesn't work because `init()` needs to access the variable as well.
2. Defining the global variable as type `std::unique_ptr<DelayManager>` and initialize it in `get_delay_us`. This works but it requires a lock to be thread-safe.
edoakes pushed a commit that referenced this pull request Mar 22, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants