This is the official repository for the paper Optimal Transport for Domain Adaptation through Gaussian Mixture Models, accepted in TMLR. Our paper uses the GMM-OTDA framework of (Delon and Desolneux, 2020) for domain adaptation, through 2 strategies,
- Mapping estimation, which maps points in the source domain towards the target domain using the GMMs,
- Label propagation, which estimates labels for the target domain GMM components.
You can run our code using,
python visda.py --base_path=PATH_TO_DATA --features="vit" --clusters_per_class="4" --reg_e=0.1
The extracted features for VisDA can be acessed in Google Drive.
@article{
montesuma2024optimal,
title={Optimal Transport for Domain Adaptation through Gaussian Mixture Models},
author={Montesuma, Eduardo Fernandes and Mboula, Fred Maurice Ngol{\`e} and Souloumiac, Antoine},
journal={Transactions on Machine Learning Research},
year={2024},
url={https://openreview.net/forum?id=DCAeXwLenB},
note={Under review}
}
- Delon, J., & Desolneux, A. (2020). A Wasserstein-type distance in the space of Gaussian mixture models. SIAM Journal on Imaging Sciences, 13(2), 936-970.