Skip to content

Commit

Permalink
Merge pull request #948 from Mv77/Dist/MVNormal
Browse files Browse the repository at this point in the history
Multivariate normal with discrete approximation
  • Loading branch information
llorracc authored May 26, 2021
2 parents 3870441 + cc9ad20 commit 365949e
Show file tree
Hide file tree
Showing 4 changed files with 167 additions and 26 deletions.
1 change: 1 addition & 0 deletions Documentation/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ Release Data: March 4, 2021
* Adds a constructor for LogNormal distributions from mean and standard deviation [#891](https://github.com/econ-ark/HARK/pull/891/)
* Uses new LogNormal constructor in ConsPortfolioModel [#891](https://github.com/econ-ark/HARK/pull/891/)
* calcExpectations method for taking the expectation of a distribution over a function [#884](https://github.com/econ-ark/HARK/pull/884/] (#897)[https://github.com/econ-ark/HARK/pull/897/)
* Implements the multivariate normal as a supported distribution, with a discretization method. See [#948](https://github.com/econ-ark/HARK/pull/948).
* Centralizes the definition of value, marginal value, and marginal marginal value functions that use inverse-space
interpolation for problems with CRRA utility. See [#888](https://github.com/econ-ark/HARK/pull/888).
* MarkovProcess class used in ConsMarkovModel, ConsRepAgentModel, ConsAggShockModel [#902](https://github.com/econ-ark/HARK/pull/902) [#929](https://github.com/econ-ark/HARK/pull/929)
Expand Down
100 changes: 100 additions & 0 deletions HARK/distribution.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from HARK.utilities import memoize
from itertools import product
import math
import numpy as np
from scipy.special import erf, erfc
Expand Down Expand Up @@ -298,7 +299,106 @@ def approx(self, N):
return DiscreteDistribution(
pmf, X, seed=self.RNG.randint(0, 2 ** 31 - 1, dtype="int32")
)

def approx_equiprobable(self, N):

CDF = np.linspace(0,1,N+1)
lims = stats.norm.ppf(CDF)
scores = (lims - self.mu)/self.sigma
pdf = stats.norm.pdf(scores)

# Find conditional means using Mills's ratio
pmf = np.diff(CDF)
X = self.mu - np.diff(pdf)/pmf

return DiscreteDistribution(
pmf, X, seed=self.RNG.randint(0, 2 ** 31 - 1, dtype="int32")
)


class MVNormal(Distribution):
"""
A Multivariate Normal distribution.
Parameters
----------
mu : numpy array
Mean vector.
Sigma : 2-d numpy array. Each dimension must have length equal to that of
mu.
Variance-covariance matrix.
seed : int
Seed for random number generator.
"""

mu = None
Sigma = None

def __init__(self, mu = np.array([1,1]), Sigma = np.array([[1,0],[0,1]]), seed=0):
self.mu = mu
self.Sigma = Sigma
self.M = len(self.mu)
super().__init__(seed)

def draw(self, N):
"""
Generate an array of multivariate normal draws.
Parameters
----------
N : int
Number of multivariate draws.
Returns
-------
draws : np.array
Array of dimensions N x M containing the random draws, where M is
the dimension of the multivariate normal and N is the number of
draws. Each row represents a draw.
"""
draws = self.RNG.multivariate_normal(self.mu, self.Sigma, N)

return draws

def approx(self, N, equiprobable = False):
"""
Returns a discrete approximation of this distribution.
The discretization will have N**M points, where M is the dimension of
the multivariate normal.
It uses the fact that:
- Being positive definite, Sigma can be factorized as Sigma = QVQ',
with V diagonal. So, letting A=Q*sqrt(V), Sigma = A*A'.
- If Z is an N-dimensional multivariate standard normal, then
A*Z ~ N(0,A*A' = Sigma).
The idea therefore is to construct an equiprobable grid for a standard
normal and multiply it by matrix A.
"""

# Start by computing matrix A.
v, Q = np.linalg.eig(self.Sigma)
sqrtV = np.diag(np.sqrt(v))
A = np.matmul(Q,sqrtV)

# Now find a discretization for a univariate standard normal.
if equiprobable:
z_approx = Normal().approx_equiprobable(N)
else:
z_approx = Normal().approx(N)

# Now create the multivariate grid and pmf
Z = np.array(list(product(*[z_approx.X]*self.M)))
pmf = np.prod(np.array(list(product(*[z_approx.pmf]*self.M))),axis = 1)

# Apply mean and standard deviation to the Z grid
X = np.tile(np.reshape(self.mu, (1, self.M)), (N**self.M,1)) + np.matmul(Z, A.T)

# Construct and return discrete distribution
return DiscreteDistribution(
pmf, X, seed=self.RNG.randint(0, 2 ** 31 - 1, dtype="int32")
)

class Weibull(Distribution):
"""
Expand Down
40 changes: 40 additions & 0 deletions HARK/tests/test_approxDstns.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,43 @@ def test_mu_lognormal_from_normal(self):
)
< 1e-12
)


class test_MVNormalApprox(unittest.TestCase):
def setUp(self):

N = 5

# 2-D distribution
self.mu2 = np.array([5, -10])
self.Sigma2 = np.array([[2, -0.6], [-0.6, 1]])
self.dist2D = distribution.MVNormal(self.mu2, self.Sigma2)
self.dist2D_approx = self.dist2D.approx(N)

# 3-D Distribution
self.mu3 = np.array([5, -10, 0])
self.Sigma3 = np.array([[2, -0.6, 0.1], [-0.6, 1, 0.2], [0.1, 0.2, 3]])
self.dist3D = distribution.MVNormal(self.mu3, self.Sigma3)
self.dist3D_approx = self.dist3D.approx(N)

def test_means(self):

mu_2D = distribution.calc_expectation(self.dist2D_approx)
self.assertTrue(np.allclose(mu_2D, self.mu2, rtol=1e-5))

mu_3D = distribution.calc_expectation(self.dist3D_approx)
self.assertTrue(np.allclose(mu_3D, self.mu3, rtol=1e-5))

def test_VCOV(self):

vcov_fun = lambda X, mu: np.outer(X - mu, X - mu)

Sig_2D = distribution.calc_expectation(self.dist2D_approx, vcov_fun, self.mu2)[
:, :, 0
]
self.assertTrue(np.allclose(Sig_2D, self.Sigma2, rtol=1e-5))

Sig_3D = distribution.calc_expectation(self.dist3D_approx, vcov_fun, self.mu3)[
:, :, 0
]
self.assertTrue(np.allclose(Sig_3D, self.Sigma3, rtol=1e-5))
52 changes: 26 additions & 26 deletions HARK/tests/test_distribution.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
Lognormal,
MeanOneLogNormal,
Normal,
MVNormal,
Uniform,
Weibull,
calc_expectation,
Expand All @@ -24,18 +25,13 @@ class DiscreteDistributionTests(unittest.TestCase):

def test_draw(self):
self.assertEqual(
DiscreteDistribution(
np.ones(1),
np.zeros(1)).draw(1)[
0
],
0,
DiscreteDistribution(np.ones(1), np.zeros(1)).draw(1)[0], 0,
)

def test_calc_expectation(self):
dd_0_1_20 = Normal().approx(20)
dd_1_1_40 = Normal(mu = 1).approx(40)
dd_10_10_100 = Normal(mu = 10, sigma = 10).approx(100)
dd_1_1_40 = Normal(mu=1).approx(40)
dd_10_10_100 = Normal(mu=10, sigma=10).approx(100)

ce1 = calc_expectation(dd_0_1_20)
ce2 = calc_expectation(dd_1_1_40)
Expand Down Expand Up @@ -89,14 +85,12 @@ def test_calc_expectation(self):
ce9 = calc_expectation(
IncShkDstn,
lambda X, a, r: r / X[0] * a + X[1],
np.array([0,1,2,3,4,5]), # an aNrmNow grid?
1.05 # an interest rate?
np.array([0, 1, 2, 3, 4, 5]), # an aNrmNow grid?
1.05, # an interest rate?
)

self.assertAlmostEqual(
ce9[3],
9.518015322143837
)
self.assertAlmostEqual(ce9[3], 9.518015322143837)


class DistributionClassTests(unittest.TestCase):
"""
Expand Down Expand Up @@ -128,27 +122,35 @@ def test_Normal(self):

self.assertEqual(dist.draw(1)[0], 1.764052345967664)

def test_MVNormal(self):
dist = MVNormal()

self.assertTrue(
np.allclose(dist.draw(1)[0], np.array([2.76405235, 1.40015721]))
)

dist.draw(100)
dist.reset()

self.assertTrue(
np.allclose(dist.draw(1)[0], np.array([2.76405235, 1.40015721]))
)

def test_Weibull(self):
self.assertEqual(
Weibull().draw(1)[0],
0.79587450816311)
self.assertEqual(Weibull().draw(1)[0], 0.79587450816311)

def test_Uniform(self):
uni = Uniform()

self.assertEqual(
Uniform().draw(1)[0],
0.5488135039273248)
self.assertEqual(Uniform().draw(1)[0], 0.5488135039273248)

self.assertEqual(
calc_expectation(uni.approx(10)),
0.5
)

def test_Bernoulli(self):
self.assertEqual(
Bernoulli().draw(1)[0], False
)
self.assertEqual(Bernoulli().draw(1)[0], False)


class MarkovProcessTests(unittest.TestCase):
Expand All @@ -158,9 +160,7 @@ class MarkovProcessTests(unittest.TestCase):

def test_draw(self):

mrkv_array = np.array(
[[.75, .25],[0.1, 0.9]]
)
mrkv_array = np.array([[0.75, 0.25], [0.1, 0.9]])

mp = distribution.MarkovProcess(mrkv_array)

Expand Down

0 comments on commit 365949e

Please sign in to comment.