Skip to content

Commit

Permalink
add tests
Browse files Browse the repository at this point in the history
  • Loading branch information
eaidova committed Nov 29, 2022
1 parent cddc2e4 commit df79c83
Show file tree
Hide file tree
Showing 2 changed files with 124 additions and 0 deletions.
45 changes: 45 additions & 0 deletions tests/layer_tests/pytorch_tests/test_addmm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# Copyright (C) 2018-2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
from pytorch_layer_test_class import PytorchLayerTest


class TestAddMM(PytorchLayerTest):
def _prepare_input(self, input_shape=(2,2), matrix1_shape=(2, 2), matrix2_shape=(2, 2)):
import numpy as np
return (
np.random.randn(*input_shape).astype(np.float32),
np.random.randn(*matrix1_shape).astype(np.float32),
np.random.randn(*matrix2_shape).astype(np.float32)
)

def create_model(self, alpha, beta):

import torch

class aten_addmm(torch.nn.Module):
def __init__(self, alpha, beta):
super(aten_addmm, self).__init__()
self.alpha = alpha
self.beta = beta

def forward(self, m0, m1, m2):
return torch.addmm(m0, m1, m2, alpha=self.alpha, beta=self.beta)

ref_net = None

return aten_addmm(alpha, beta), ref_net, 'aten::addmm'

@pytest.mark.parametrize("kwargs_to_prepare_input", [
{"input_shape": (3, 3), 'matrix1_shape': (3, 3), 'matrix2_shape': (3, 3)},
{"input_shape": (2, 2), 'matrix1_shape': (2, 3), 'matrix2_shape': (3, 2)},
{"input_shape": (10, 1), 'matrix1_shape': (10, 5), 'matrix2_shape': (5, 1)},
{"input_shape": (1, 2), 'matrix1_shape': (1, 10), 'matrix2_shape': (10, 2)},
{"input_shape": (1, 1), 'matrix1_shape': (1, 10), 'matrix2_shape': (10, 1)},
])
@pytest.mark.parametrize("alpha,beta", [(1., 1.), (0., 1.), (1., 0.), (1., 2.), (2., 1.), (-5., -6.), (3., 4.), (0.5, 0.75)])
@pytest.mark.nightly
def test_addmm(self, kwargs_to_prepare_input, alpha, beta, ie_device, precision, ir_version):
self._test(*self.create_model(alpha, beta), ie_device, precision, ir_version, kwargs_to_prepare_input=kwargs_to_prepare_input)
79 changes: 79 additions & 0 deletions tests/layer_tests/pytorch_tests/test_mm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# Copyright (C) 2018-2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
from pytorch_layer_test_class import PytorchLayerTest


class TestMatMul(PytorchLayerTest):
def _prepare_input(self, matrix1_shape=(2, 2), matrix2_shape=(2, 2)):
import numpy as np
return (np.random.randn(*matrix1_shape).astype(np.float32), np.random.randn(*matrix2_shape).astype(np.float32))

def create_model(self, op_type="aten::mm"):

import torch
ops = {
"aten::mm": torch.mm,
"aten::bmm": torch.bmm,
"aten::matmul": torch.matmul
}

class aten_mm(torch.nn.Module):
def __init__(self, op):
super(aten_mm, self).__init__()
self.op = op

def forward(self, m1, m2):
return self.op(m1, m2)
ref_net = None

return aten_mm(ops[op_type]), ref_net, op_type

@pytest.mark.parametrize("kwargs_to_prepare_input", [
{'matrix1_shape': (3, 3), 'matrix2_shape': (3, 3)},
{'matrix1_shape': (2, 3), 'matrix2_shape': (3, 2)},
{'matrix1_shape': (10, 5), 'matrix2_shape': (5, 1)},
{'matrix1_shape': (1, 10), 'matrix2_shape': (10, 2)},
{'matrix1_shape': (1, 10), 'matrix2_shape': (10, 1)},
])
@pytest.mark.nightly
def test_mm(self, kwargs_to_prepare_input, ie_device, precision, ir_version):
self._test(*self.create_model('aten::mm'), ie_device, precision, ir_version, kwargs_to_prepare_input=kwargs_to_prepare_input)

@pytest.mark.parametrize("kwargs_to_prepare_input", [
{'matrix1_shape': (10, 3, 3), 'matrix2_shape': (10, 3, 3)},
{'matrix1_shape': (1, 2, 3), 'matrix2_shape': (1, 3, 2)},
{'matrix1_shape': (2, 10, 5), 'matrix2_shape': (2, 5, 1)},
{'matrix1_shape': (3, 1, 10), 'matrix2_shape': (3, 10, 2)},
{'matrix1_shape': (4, 1, 10), 'matrix2_shape': (4, 10, 1)},
])
@pytest.mark.nightly
def test_bmm(self, kwargs_to_prepare_input, ie_device, precision, ir_version):
self._test(*self.create_model('aten::bmm'), ie_device, precision, ir_version, kwargs_to_prepare_input=kwargs_to_prepare_input)

@pytest.mark.parametrize("kwargs_to_prepare_input", [
{'matrix1_shape': (10, 3, 3), 'matrix2_shape': (10, 3, 3)},
{'matrix1_shape': (1, 2, 3), 'matrix2_shape': (1, 3, 2)},
{'matrix1_shape': (2, 10, 5), 'matrix2_shape': (2, 5, 1)},
{'matrix1_shape': (3, 1, 10), 'matrix2_shape': (3, 10, 2)},
{'matrix1_shape': (4, 1, 10), 'matrix2_shape': (4, 10, 1)},
{'matrix1_shape': (3, 3), 'matrix2_shape': (3, 3)},
{'matrix1_shape': (2, 3), 'matrix2_shape': (3, 2)},
{'matrix1_shape': (10, 5), 'matrix2_shape': (5, 1)},
{'matrix1_shape': (1, 10), 'matrix2_shape': (10, 2)},
{'matrix1_shape': (1, 10), 'matrix2_shape': (10, 1)},
{'matrix1_shape': (10, 3, 3), 'matrix2_shape': (3, 3)},
{'matrix1_shape': (2, 3), 'matrix2_shape': (10, 3, 2)},
{'matrix1_shape': (1, 10, 5), 'matrix2_shape': (5, 1)},
{'matrix1_shape': (5, 1, 10), 'matrix2_shape': (10, 2)},
{'matrix1_shape': (1, 10), 'matrix2_shape': (4, 10, 2)},
{'matrix1_shape': (2, 1, 10), 'matrix2_shape': (10, 1)},
{'matrix1_shape': (1, 10), 'matrix2_shape': (2, 10, 1)},
])
@pytest.mark.nightly
def test_matmul(self, kwargs_to_prepare_input, ie_device, precision, ir_version):
self._test(*self.create_model('aten::matmul'), ie_device, precision, ir_version, kwargs_to_prepare_input=kwargs_to_prepare_input)

0 comments on commit df79c83

Please sign in to comment.