-
Notifications
You must be signed in to change notification settings - Fork 14
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Refine tf mnist #47
Merged
dzhwinter
merged 3 commits into
dzhwinter:master
from
chengduoZH:feature/refine_tf_mnist
Jan 14, 2018
Merged
Refine tf mnist #47
Changes from 1 commit
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -10,140 +10,136 @@ | |
import paddle.v2 as paddle | ||
import paddle.v2.fluid as fluid | ||
|
||
BATCH_SIZE = 128 | ||
PASS_NUM = 5 | ||
SEED = 1 | ||
DTYPE = tf.float32 | ||
|
||
|
||
def normal_scale(size, channels): | ||
scale = (2.0 / (size**2 * channels))**0.5 | ||
return scale | ||
|
||
|
||
# NOTE(dzhwinter) : tensorflow use Phliox random algorithm | ||
# as normal generator, fetch out paddle random for comparization | ||
def paddle_random_normal(shape, loc=.0, scale=1., seed=1, dtype="float32"): | ||
program = fluid.framework.Program() | ||
block = program.global_block() | ||
w = block.create_var( | ||
dtype="float32", | ||
shape=shape, | ||
lod_level=0, | ||
name="param", | ||
initializer=fluid.initializer.NormalInitializer( | ||
loc=.0, scale=scale, seed=seed)) | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
out = exe.run(program, fetch_list=[w]) | ||
return np.array(out[0]) | ||
|
||
|
||
train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=BATCH_SIZE) | ||
images = tf.placeholder(DTYPE, shape=(None, 28, 28, 1)) | ||
labels = tf.placeholder(tf.int64, shape=(None, )) | ||
|
||
# conv layer | ||
arg = tf.convert_to_tensor( | ||
np.transpose( | ||
paddle_random_normal( | ||
[20, 1, 5, 5], scale=normal_scale(5, 1), seed=SEED, dtype=DTYPE), | ||
axes=[2, 3, 1, 0])) | ||
conv1_weights = tf.Variable(arg) | ||
conv1_bias = tf.Variable(tf.zeros([20]), dtype=DTYPE) | ||
conv1 = tf.nn.conv2d( | ||
images, conv1_weights, strides=[1, 1, 1, 1], padding="VALID") | ||
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias)) | ||
pool1 = tf.nn.max_pool( | ||
relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID") | ||
|
||
arg = tf.convert_to_tensor( | ||
np.transpose( | ||
paddle_random_normal( | ||
[50, 20, 5, 5], scale=normal_scale(5, 20), seed=SEED, dtype=DTYPE), | ||
axes=[2, 3, 1, 0])) | ||
conv2_weights = tf.Variable(arg) | ||
conv2_bias = tf.Variable(tf.zeros([50]), dtype=DTYPE) | ||
conv2 = tf.nn.conv2d( | ||
pool1, conv2_weights, strides=[1, 1, 1, 1], padding="VALID") | ||
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias)) | ||
pool2 = tf.nn.max_pool( | ||
relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID") | ||
|
||
pool_shape = pool2.get_shape().as_list() | ||
hidden_dim = reduce(lambda a, b: a * b, pool_shape[1:], 1) | ||
reshape = tf.reshape(pool2, shape=(tf.shape(pool2)[0], hidden_dim)) | ||
|
||
# fc layer | ||
# NOTE(dzhwinter) : paddle has a NCHW data format, tensorflow has a NHWC data format | ||
# need to convert the fc weight | ||
paddle_weight = paddle_random_normal( | ||
[hidden_dim, 10], | ||
scale=normal_scale(hidden_dim, 10), | ||
seed=SEED, | ||
dtype=DTYPE) | ||
new_shape = pool_shape[-1:] + pool_shape[1:-1] + [10] | ||
paddle_weight = np.reshape(paddle_weight, new_shape) | ||
paddle_weight = np.transpose(paddle_weight, [1, 2, 0, 3]) | ||
|
||
arg = tf.convert_to_tensor(np.reshape(paddle_weight, [hidden_dim, 10])) | ||
fc_weights = tf.Variable(arg, dtype=DTYPE) | ||
fc_bias = tf.Variable(tf.zeros([10]), dtype=DTYPE) | ||
logits = tf.matmul(reshape, fc_weights) + fc_bias | ||
|
||
# cross entropy | ||
|
||
prediction = tf.nn.softmax(logits) | ||
|
||
one_hot_labels = tf.one_hot(labels, depth=10) | ||
cost = -tf.reduce_sum(tf.log(prediction) * one_hot_labels, [1]) | ||
avg_cost = tf.reduce_mean(cost) | ||
|
||
correct = tf.equal(tf.argmax(prediction, 1), labels) | ||
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) | ||
g_accuracy = tf.metrics.accuracy(labels, tf.argmax(prediction, axis=1)) | ||
|
||
opt = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999) | ||
train_op = opt.minimize(avg_cost) | ||
|
||
|
||
def eval_test(): | ||
def parse_args(): | ||
parser = argparse.ArgumentParser("mnist model benchmark.") | ||
parser.add_argument( | ||
'--batch_size', type=int, default=128, help='The minibatch size.') | ||
parser.add_argument( | ||
'--iterations', type=int, default=35, help='The number of minibatches.') | ||
parser.add_argument( | ||
'--pass_num', type=int, default=5, help='The number of passes.') | ||
parser.add_argument( | ||
'--device', | ||
type=str, | ||
default='GPU', | ||
choices=['CPU', 'GPU'], | ||
help='The device type.') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def run_benchmark(args): | ||
def weight_variable(dtype, shape): | ||
initial = tf.truncated_normal(shape, stddev=0.1, dtype=dtype) | ||
return tf.Variable(initial) | ||
|
||
def bias_variable(dtype, shape): | ||
initial = tf.constant(0.1, shape=shape, dtype=dtype) | ||
return tf.Variable(initial) | ||
|
||
device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0' | ||
with tf.device(device): | ||
|
||
images = tf.placeholder(DTYPE, shape=(None, 28, 28, 1)) | ||
labels = tf.placeholder(tf.int64, shape=(None, )) | ||
|
||
conv1_weights = weight_variable(DTYPE, [5, 5, 1, 20]) | ||
conv1_bias = bias_variable(DTYPE, [20]) | ||
conv1 = tf.nn.conv2d( | ||
images, conv1_weights, strides=[1, 1, 1, 1], padding="VALID") | ||
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias)) | ||
pool1 = tf.nn.max_pool( | ||
relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID") | ||
|
||
conv2_weights = weight_variable(DTYPE, [5, 5, 20, 50]) | ||
conv2_bias = bias_variable(DTYPE, [50]) | ||
conv2 = tf.nn.conv2d( | ||
pool1, conv2_weights, strides=[1, 1, 1, 1], padding="VALID") | ||
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias)) | ||
pool2 = tf.nn.max_pool( | ||
relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID") | ||
|
||
pool_shape = pool2.get_shape().as_list() | ||
hidden_dim = reduce(lambda a, b: a * b, pool_shape[1:], 1) | ||
reshape = tf.reshape(pool2, shape=(tf.shape(pool2)[0], hidden_dim)) | ||
|
||
fc_weights = weight_variable(DTYPE, [hidden_dim, 10]) | ||
fc_bias = bias_variable(DTYPE, [10]) | ||
logits = tf.matmul(reshape, fc_weights) + fc_bias | ||
prediction = tf.nn.softmax(logits) | ||
|
||
one_hot_labels = tf.one_hot(labels, depth=10) | ||
cost = -tf.reduce_sum(tf.log(prediction) * one_hot_labels, [1]) | ||
avg_cost = tf.reduce_mean(cost) | ||
|
||
correct = tf.equal(tf.argmax(prediction, 1), labels) | ||
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) | ||
g_accuracy = tf.metrics.accuracy(labels, tf.argmax(prediction, axis=1)) | ||
|
||
opt = tf.train.AdamOptimizer( | ||
learning_rate=0.001, beta1=0.9, beta2=0.999) | ||
train_op = opt.minimize(avg_cost) | ||
# train_op = tf.train.AdamOptimizer(1e-4).minimize(avg_cost) | ||
|
||
train_reader = paddle.batch( | ||
paddle.dataset.mnist.train(), batch_size=args.batch_size) | ||
test_reader = paddle.batch( | ||
paddle.dataset.mnist.test(), batch_size=BATCH_SIZE) | ||
for batch_id, data in enumerate(test_reader()): | ||
images_data = np.array( | ||
map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32") | ||
labels_data = np.array(map(lambda x: x[1], data)).astype("int64") | ||
_, loss, acc, g_acc = sess.run( | ||
[train_op, avg_cost, accuracy, g_accuracy], | ||
feed_dict={images: images_data, | ||
labels: labels_data}) | ||
return g_acc[1] | ||
|
||
|
||
config = tf.ConfigProto( | ||
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) | ||
with tf.Session(config=config) as sess: | ||
init_g = tf.global_variables_initializer() | ||
init_l = tf.local_variables_initializer() | ||
sess.run(init_g) | ||
sess.run(init_l) | ||
for pass_id in range(PASS_NUM): | ||
pass_start = time.time() | ||
for batch_id, data in enumerate(train_reader()): | ||
paddle.dataset.mnist.test(), batch_size=args.batch_size) | ||
|
||
def eval_test(): | ||
for batch_id, data in enumerate(test_reader()): | ||
images_data = np.array( | ||
map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32") | ||
labels_data = np.array(map(lambda x: x[1], data)).astype("int64") | ||
start = time.time() | ||
|
||
_, loss, acc, g_acc = sess.run( | ||
[train_op, avg_cost, accuracy, g_accuracy], | ||
feed_dict={images: images_data, | ||
labels: labels_data}) | ||
end = time.time() | ||
|
||
print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" % | ||
(pass_id, batch_id, loss, 1 - acc, (end - start) / 1000)) | ||
pass_end = time.time() | ||
test_avg_acc = eval_test() | ||
print("pass=%d, training_avg_accuracy=%f, test_avg_acc=%f, elapse=%f" % | ||
(pass_id, g_acc[1], test_avg_acc, (pass_end - pass_start) / 1000)) | ||
return g_acc[1] | ||
|
||
config = tf.ConfigProto( | ||
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) | ||
with tf.Session(config=config) as sess: | ||
init_g = tf.global_variables_initializer() | ||
init_l = tf.local_variables_initializer() | ||
sess.run(init_g) | ||
sess.run(init_l) | ||
for pass_id in range(args.pass_num): | ||
pass_start = time.time() | ||
for batch_id, data in enumerate(train_reader()): | ||
images_data = np.array( | ||
map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32") | ||
labels_data = np.array(map(lambda x: x[1], data)).astype( | ||
"int64") | ||
start = time.time() | ||
_, loss, acc, g_acc = sess.run( | ||
[train_op, avg_cost, accuracy, g_accuracy], | ||
feed_dict={images: images_data, | ||
labels: labels_data}) | ||
end = time.time() | ||
|
||
print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" % | ||
(pass_id, batch_id, loss, 1 - acc, (end - start) / 1000)) | ||
pass_end = time.time() | ||
test_avg_acc = eval_test() | ||
print( | ||
"pass=%d, training_avg_accuracy=%f, test_avg_acc=%f, elapse=%f" | ||
% (pass_id, g_acc[1], test_avg_acc, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as above, I think better to reset the accumulating state in the begin of each epoch. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Donw |
||
(pass_end - pass_start) / 1000)) | ||
|
||
|
||
def print_arguments(args): | ||
print('----------- Configuration Arguments -----------') | ||
for arg, value in sorted(vars(args).iteritems()): | ||
print('%s: %s' % (arg, value)) | ||
print('------------------------------------------------') | ||
|
||
|
||
if __name__ == '__main__': | ||
args = parse_args() | ||
print_arguments(args) | ||
run_benchmark(args) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Be careful here, tf.metrics.accuracy will accumulate the acc. Please make sure to reset the accumulating variables each time doing validation. You can refer tensorflow/tensorflow#4814 (comment)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done. Thx!