Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CI] Use latest XGBoost #572

Merged
merged 2 commits into from
Jun 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ops/conda_env/dev.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,11 @@ dependencies:
- llvm-openmp
- cython
- lightgbm
- xgboost
- cpplint
- pylint
- awscli
- python-build
- pip
- pip:
- cibuildwheel
- xgboost==2.1.0
12 changes: 6 additions & 6 deletions tests/python/test_xgboost_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def test_xgb_regressor(
xgb_model.save_model(model_path)
tl_model = treelite.frontend.load_xgboost_model(model_path)
else:
model_name = "model.model"
model_name = "model.deprecated"
model_path = pathlib.Path(tmpdir) / model_name
xgb_model.save_model(model_path)
tl_model = treelite.frontend.load_xgboost_model_legacy_binary(model_path)
Expand Down Expand Up @@ -185,7 +185,7 @@ def test_xgb_multiclass_classifier(
xgb_model.save_model(model_path)
tl_model = treelite.frontend.load_xgboost_model(model_path)
else:
model_name = "iris.model"
model_name = "iris.deprecated"
model_path = pathlib.Path(tmpdir) / model_name
xgb_model.save_model(model_path)
tl_model = treelite.frontend.load_xgboost_model_legacy_binary(model_path)
Expand Down Expand Up @@ -268,7 +268,7 @@ def test_xgb_nonlinear_objective(
if model_format == "json":
model_name = f"nonlinear_{objective_tag}.json"
else:
model_name = f"nonlinear_{objective_tag}.bin"
model_name = f"nonlinear_{objective_tag}.deprecated"
with TemporaryDirectory() as tmpdir:
model_path = pathlib.Path(tmpdir) / model_name
xgb_model.save_model(model_path)
Expand All @@ -287,7 +287,7 @@ def test_xgb_nonlinear_objective(

@given(
dataset=standard_classification_datasets(n_classes=just(2)),
model_format=sampled_from(["legacy_binary", "json"]),
model_format=sampled_from(["in_memory", "json"]),
num_boost_round=integers(min_value=5, max_value=20),
)
@settings(**standard_settings())
Expand Down Expand Up @@ -467,7 +467,7 @@ def test_xgb_multi_target_binary_classifier(
bst.save_model(model_path)
tl_model = treelite.frontend.load_xgboost_model(model_path)
else:
model_path = pathlib.Path(tmpdir) / "multi_target.model"
model_path = pathlib.Path(tmpdir) / "multi_target.deprecated"
bst.save_model(model_path)
tl_model = treelite.frontend.load_xgboost_model_legacy_binary(
model_path
Expand Down Expand Up @@ -548,7 +548,7 @@ def test_xgb_multi_target_regressor(
xgb_model.save_model(model_path)
tl_model = treelite.frontend.load_xgboost_model(model_path)
else:
model_name = "model.model"
model_name = "model.deprecated"
model_path = pathlib.Path(tmpdir) / model_name
xgb_model.save_model(model_path)
tl_model = treelite.frontend.load_xgboost_model_legacy_binary(model_path)
Expand Down
Loading