Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Auto] Fix estimators #1619

Merged
merged 5 commits into from
Feb 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions gluoncv/auto/estimators/base_estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,6 +155,7 @@ def fit(self, train_data, val_data=None, train_size=0.9, random_state=None,
return self._fit(train_data, val_data, time_limit=time_limit) if not resume \
else self._resume_fit(train_data, val_data, time_limit=time_limit)

os.makedirs(self._logdir, exist_ok=True)
if val_data is None:
assert 0 <= train_size <= 1.0
if random_state:
Expand Down
8 changes: 6 additions & 2 deletions gluoncv/auto/tasks/image_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,8 +121,12 @@ def _train_image_classification(args, reporter):
if best_checkpoint:
estimator = estimator_cls.load(best_checkpoint)
if estimator is None:
result.update({'traceback': 'timeout'})
else:
if wall_clock_tick < tic:
result.update({'traceback': 'timeout'})
else:
# unknown error yet, try reproduce it
final_fit = False
if not final_fit:
# create independent log_dir for each trial
trial_log_dir = os.path.join(log_dir, '.trial_{}'.format(task_id))
args['log_dir'] = trial_log_dir
Expand Down
8 changes: 6 additions & 2 deletions gluoncv/auto/tasks/object_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,8 +127,12 @@ def _train_object_detection(args, reporter):
if best_checkpoint:
estimator = estimator_cls.load(best_checkpoint)
if estimator is None:
result.update({'traceback': 'timeout'})
else:
if wall_clock_tick < tic:
result.update({'traceback': 'timeout'})
else:
# unknown error
final_fit = False
if not final_fit:
# create independent log_dir for each trial
trial_log_dir = os.path.join(log_dir, '.trial_{}'.format(task_id))
args['log_dir'] = trial_log_dir
Expand Down
16 changes: 8 additions & 8 deletions tests/auto/test_auto_tasks.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

def test_image_classification():
from gluoncv.auto.tasks import ImageClassification
task = ImageClassification({'num_trials': 1, 'epochs': 1})
task = ImageClassification({'num_trials': 1, 'epochs': 1, 'batch_size': 8})
classifier = task.fit(IMAGE_CLASS_DATASET)
assert task.fit_summary().get('valid_acc', 0) > 0
test_result = classifier.predict(IMAGE_CLASS_TEST)
Expand All @@ -19,39 +19,39 @@ def test_image_classification_custom_net():
from gluoncv.auto.tasks import ImageClassification
from gluoncv.model_zoo import get_model
net = get_model('resnet18_v1')
task = ImageClassification({'num_trials': 1, 'epochs': 1, 'custom_net': net})
task = ImageClassification({'num_trials': 1, 'epochs': 1, 'custom_net': net, 'batch_size': 8})
classifier = task.fit(IMAGE_CLASS_DATASET)
assert task.fit_summary().get('valid_acc', 0) > 0
test_result = classifier.predict(IMAGE_CLASS_TEST)

def test_object_detection_estimator():
from gluoncv.auto.tasks import ObjectDetection
task = ObjectDetection({'num_trials': 1, 'epochs': 1})
task = ObjectDetection({'num_trials': 1, 'epochs': 1, 'batch_size': 4})
detector = task.fit(OBJECT_DETECTION_TRAIN)
assert task.fit_summary().get('valid_map', 0) > 0
test_result = detector.predict(OBJECT_DETECTION_TEST)

def test_object_detection_estimator_transfer():
from gluoncv.auto.tasks import ObjectDetection
task = ObjectDetection({'num_trials': 1, 'epochs': 1, 'transfer': ag.Categorical('yolo3_darknet53_coco', 'ssd_512_resnet50_v1_voc'), 'estimator': 'ssd'})
task = ObjectDetection({'num_trials': 1, 'epochs': 1, 'transfer': ag.Categorical('yolo3_darknet53_coco', 'ssd_512_resnet50_v1_voc'), 'estimator': 'ssd', 'batch_size': 4})
detector = task.fit(OBJECT_DETECTION_TRAIN)
assert task.fit_summary().get('valid_map', 0) > 0
test_result = detector.predict(OBJECT_DETECTION_TEST)

def test_time_out_image_classification():
time_limit = 30
time_limit = 15
from gluoncv.auto.tasks import ImageClassification
task = ImageClassification({'num_trials': 1, 'epochs': 50})
task = ImageClassification({'num_trials': 1, 'epochs': 10, 'batch_size': 8})

tic = time.time()
classifier = task.fit(IMAGE_CLASS_DATASET, time_limit=time_limit)
# check time_limit with a little bit overhead
assert (time.time() - tic) < time_limit + 180

def test_time_out_detection():
time_limit = 30
time_limit = 15
from gluoncv.auto.tasks import ObjectDetection
task = ObjectDetection({'num_trials': 1, 'epochs': 50, 'time_limits': time_limit})
task = ObjectDetection({'num_trials': 1, 'epochs': 5, 'time_limits': time_limit, 'batch_size': 4})
tic = time.time()
detector = task.fit(OBJECT_DETECTION_TRAIN)
# check time_limit with a little bit overhead
Expand Down