-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* test * shufflenet * support py3 * remove train log remove train log from readme * modify syntax error modify syntax error * check the syntax error modified the error
- Loading branch information
Showing
2 changed files
with
232 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
# coding: utf-8 | ||
# pylint: disable= line-too-long,arguments-differ,unused-argument,missing-docstring,too-many-function-args | ||
# pylint: disable= line-too-long | ||
"""ShuffleNetV1 and ShuffleNetV2, implemented in Gluon.""" | ||
from mxnet.context import cpu | ||
from mxnet.gluon import nn | ||
from mxnet.gluon.nn import BatchNorm | ||
from mxnet.gluon.block import HybridBlock | ||
|
||
__all__ = [ | ||
'ShuffleNetV1', | ||
'shufflenet_v1', | ||
'get_shufflenet_v1', | ||
'ShuffleNetV2', | ||
'shufflenet_v2', | ||
'get_shufflenet_v2'] | ||
|
||
def _conv2d(channel, kernel=1, padding=0, stride=1, num_group=1, use_act=True, use_bias=True, norm_layer=BatchNorm, norm_kwargs=None): | ||
cell = nn.HybridSequential(prefix='') | ||
cell.add(nn.Conv2D(channel, kernel_size=kernel, strides=stride, padding=padding, groups=num_group, use_bias=use_bias)) | ||
cell.add(norm_layer(epsilon=1e-5, momentum=0.9, **({} if norm_kwargs is None else norm_kwargs))) | ||
if use_act: | ||
cell.add(nn.Activation('relu')) | ||
return cell | ||
|
||
|
||
class shuffleUnit(HybridBlock): | ||
def __init__(self, in_channels, out_channels, combine_type, groups=3, grouped_conv=True, | ||
norm_layer=BatchNorm, norm_kwargs=None, **kwargs): | ||
super(shuffleUnit, self).__init__(**kwargs) | ||
if combine_type == 'add': | ||
self.DWConv_stride = 1 | ||
elif combine_type == 'concat': | ||
self.DWConv_stride = 2 | ||
out_channels -= in_channels | ||
self.first_groups = groups if grouped_conv else 1 | ||
self.bottleneck_channels = out_channels // 4 | ||
self.grouped_conv = grouped_conv | ||
self.output_channel = out_channels | ||
self.groups = groups | ||
self.combine_type = combine_type | ||
with self.name_scope(): | ||
self.conv_beforshuffle = nn.HybridSequential() | ||
self.conv_beforshuffle.add(_conv2d(channel=self.bottleneck_channels, kernel=1, stride=1, num_group=self.first_groups)) | ||
self.conv_aftershuffle = nn.HybridSequential() | ||
self.conv_aftershuffle.add(_conv2d(channel=self.bottleneck_channels, kernel=3, padding=1, stride=self.DWConv_stride, num_group=self.bottleneck_channels, use_act=False)) | ||
self.conv_aftershuffle.add(_conv2d(channel=self.output_channel, kernel=1, stride=1, num_group=groups, use_act=False)) | ||
|
||
def combine(self, F, branch1, branch2, combine): | ||
if combine == 'add': | ||
data = branch1 + branch2 | ||
data = F.Activation(data, act_type='relu') | ||
elif combine == 'concat': | ||
data = F.concat(branch1, branch2, dim=1) | ||
data = F.Activation(data, act_type='relu') | ||
return data | ||
|
||
def channel_shuffle(self, F, data, groups): | ||
data = F.reshape(data, shape=(0, -4, groups, -1, -2)) | ||
data = F.swapaxes(data, 1, 2) | ||
data = F.reshape(data, shape=(0, -3, -2)) | ||
return data | ||
|
||
def hybrid_forward(self, F, x): | ||
res = x | ||
x = self.conv_beforshuffle(x) | ||
if self.grouped_conv: | ||
x = self.channel_shuffle(F, x, groups=self.groups) | ||
x = self.conv_aftershuffle(x) | ||
if self.combine_type == 'concat': | ||
res = F.Pooling(data=res, kernel=(3, 3), pool_type='avg', stride=(2, 2), pad=(1, 1)) | ||
x = self.combine(F, res, x, combine=self.combine_type) | ||
return x | ||
|
||
|
||
class ShuffleNetV1(HybridBlock): | ||
def __init__(self, groups=3, classes=1000, norm_layer=BatchNorm, norm_kwargs=None, **kwargs): | ||
super(ShuffleNetV1, self).__init__(**kwargs) | ||
with self.name_scope(): | ||
self.features = nn.HybridSequential(prefix='') | ||
self.features.add(nn.Conv2D(24, kernel_size=3, strides=2, padding=1)) | ||
self.features.add(nn.MaxPool2D(pool_size=3, strides=2, padding=1)) | ||
self.features.add(self.make_stage(2)) | ||
self.features.add(self.make_stage(3)) | ||
self.features.add(self.make_stage(4)) | ||
self.features.add(nn.GlobalAvgPool2D()) | ||
self.output = nn.Dense(classes) | ||
|
||
def make_stage(self, stage, groups=3): | ||
stage_repeats = [3, 7, 3] | ||
grouped_conv = stage > 2 | ||
if groups == 1: | ||
out_channels = [-1, 24, 144, 288, 567] | ||
elif groups == 2: | ||
out_channels = [-1, 24, 200, 400, 800] | ||
elif groups == 3: | ||
out_channels = [-1, 24, 240, 480, 960] | ||
elif groups == 4: | ||
out_channels = [-1, 24, 272, 544, 1088] | ||
elif groups == 8: | ||
out_channels = [-1, 24, 384, 768, 1536] | ||
body = nn.HybridSequential() | ||
body.add(shuffleUnit(out_channels[stage - 1], out_channels[stage], 'concat', groups, grouped_conv)) | ||
for i in range(stage_repeats[stage - 2]): | ||
body.add(shuffleUnit(out_channels[stage], out_channels[stage], 'add', groups, True)) | ||
return body | ||
|
||
def hybrid_forward(self, F, x): | ||
x = self.features(x) | ||
x = self.output(x) | ||
return x | ||
|
||
|
||
class shuffleUnitV2(HybridBlock): | ||
def __init__(self, in_channels, out_channels, split, norm_layer=BatchNorm, norm_kwargs=None, **kwargs): | ||
super(shuffleUnitV2, self).__init__(**kwargs) | ||
self.in_channels = in_channels | ||
self.equal_channels = out_channels // 2 | ||
self.split = split | ||
if split: | ||
self.DWConv_stride = 1 | ||
else: | ||
self.DWConv_stride = 2 | ||
with self.name_scope(): | ||
self.branch1_conv = nn.HybridSequential() | ||
self.branch1_conv.add(_conv2d(channel=self.in_channels, kernel=3, padding=1, stride=self.DWConv_stride, num_group=self.in_channels, use_act=False, use_bias=False)) | ||
self.branch1_conv.add(_conv2d(channel=self.equal_channels, kernel=1, stride=1, use_act=True, use_bias=False)) | ||
|
||
with self.name_scope(): | ||
self.branch2_conv = nn.HybridSequential() | ||
self.branch2_conv.add(_conv2d(channel=self.equal_channels, kernel=1, stride=1, use_act=True, use_bias=False)) | ||
self.branch2_conv.add(_conv2d(channel=self.equal_channels, kernel=3, padding=1, stride=self.DWConv_stride, num_group=self.equal_channels, use_act=False, use_bias=False)) | ||
self.branch2_conv.add(_conv2d(channel=self.equal_channels, kernel=1, stride=1, use_act=True, use_bias=False)) | ||
|
||
def channel_shuffle(self, F, data, groups): | ||
data = F.reshape(data, shape=(0, -4, groups, -1, -2)) | ||
data = F.swapaxes(data, 1, 2) | ||
data = F.reshape(data, shape=(0, -3, -2)) | ||
return data | ||
|
||
def hybrid_forward(self, F, x): | ||
if self.split: | ||
branch1 = F.slice_axis(x, axis=1, begin=0, end=self.in_channels // 2) | ||
branch2 = F.slice_axis(x, axis=1, begin=self.in_channels // 2, end=self.in_channels) | ||
else: | ||
branch1 = x | ||
branch2 = x | ||
branch1 = self.branch1_conv(branch1) | ||
branch2 = self.branch2_conv(branch2) | ||
x = F.concat(branch1, branch2, dim=1) | ||
x = self.channel_shuffle(F, data=x, groups=2) | ||
return x | ||
|
||
class ShuffleNetV2(HybridBlock): | ||
def __init__(self, classes=1000, norm_layer=BatchNorm, norm_kwargs=None, **kwargs): | ||
super(ShuffleNetV2, self).__init__(**kwargs) | ||
with self.name_scope(): | ||
self.features = nn.HybridSequential(prefix='') | ||
self.features.add(_conv2d(channel=24, kernel=3, stride=2, padding=1, use_act=True, use_bias=False)) | ||
self.features.add(nn.MaxPool2D(pool_size=3, strides=2, padding=1)) | ||
self.features.add(self.make_stage(2)) | ||
self.features.add(self.make_stage(3)) | ||
self.features.add(self.make_stage(4)) | ||
self.features.add(_conv2d(channel=1024, kernel=1, stride=1, use_act=True, use_bias=False)) | ||
self.features.add(nn.GlobalAvgPool2D()) | ||
self.output = nn.Dense(classes) | ||
|
||
def make_stage(self, stage, multiplier=1): | ||
stage_repeats = [3, 7, 3] | ||
if multiplier == 0.5: | ||
out_channels = [-1, 24, 48, 96, 192] | ||
elif multiplier == 1: | ||
out_channels = [-1, 24, 116, 232, 464] | ||
elif multiplier == 1.5: | ||
out_channels = [-1, 24, 176, 352, 704] | ||
elif multiplier == 2: | ||
out_channels = [-1, 24, 244, 488, 976] | ||
body = nn.HybridSequential() | ||
body.add(shuffleUnitV2(out_channels[stage - 1], out_channels[stage], split=False)) | ||
for i in range(stage_repeats[stage - 2]): | ||
body.add(shuffleUnitV2(out_channels[stage], out_channels[stage], split=True)) | ||
return body | ||
|
||
def hybrid_forward(self, F, x): | ||
x = self.features(x) | ||
x = self.output(x) | ||
return x | ||
|
||
|
||
def get_shufflenet_v1(pretrained=False, root='~/.mxnet/models', ctx=cpu(), norm_layer=BatchNorm, norm_kwargs=None, **kwargs): | ||
net = ShuffleNetV1(norm_layer=norm_layer, norm_kwargs=norm_kwargs, **kwargs) | ||
from ..data import ImageNet1kAttr | ||
attrib = ImageNet1kAttr() | ||
net.synset = attrib.synset | ||
net.classes = attrib.classes | ||
net.classes_long = attrib.classes_long | ||
return net | ||
|
||
def shufflenet_v1(**kwargs): | ||
return get_shufflenet_v1(**kwargs) | ||
|
||
def get_shufflenet_v2(pretrained=False, root='~/.mxnet/models', ctx=cpu(), norm_layer=BatchNorm, norm_kwargs=None, **kwargs): | ||
net = ShuffleNetV2(norm_layer=norm_layer, norm_kwargs=norm_kwargs, **kwargs) | ||
from ..data import ImageNet1kAttr | ||
attrib = ImageNet1kAttr() | ||
net.synset = attrib.synset | ||
net.classes = attrib.classes | ||
net.classes_long = attrib.classes_long | ||
return net | ||
|
||
def shufflenet_v2(**kwargs): | ||
return get_shufflenet_v2(**kwargs) |