Daniel Lichy, Soumyadip Sengupta, David Jacobs
This is the official code release for the paper Fast Light-Weight Near-Field Photometric Stereo.
We provide:
- The trained near-field photometric stereo model and lighting calibration model.
- Code and synthetic data to train these models.
- Code to test on the LUCES dataset.
- Code to test on our dataset from the paper and your own dataset.
This project uses the following dependencies:
- Python 3.8
- PyTorch
- torchvision
- matplotlib
- numpy
- scipy
- opencv
- OpenEXR (only required for training)
- scikit-sparse (for normal integration post processing)
The easiest way to run the code is by creating a virtual environment and installing the dependences with pip e.g.
# Create a new python3.8 environment named fastnfps
python3 -m venv fastnfps
# Activate the created environment
source fastnfps/bin/activate
#upgrade pip
pip install --upgrade pip
# To install dependencies
python -m pip install -r requirements.txt
Download the LUCES dataset from [https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/rm/Luces_dataset.zip] and unzip it.
Then run:
python eval_luces.py <output_dir> --gpu --checkpoint pretrained_weights/cvpr2022.pth --luces_dataset_root <path to luces data>/data
# To test on LUCES using the lighting calibration network instead of the ground truth light calibration add the arguments --uncalibrated --calib_net_checkpoint
python eval_luces.py <output_dir> --gpu --checkpoint pretrained_weights/cvpr2022.pth --luces_dataset_root <path to luces data>/data --uncalibrated --calib_net_checkpoint pretrained_weights/cal_cvpr2022.pth
Download our dataset from [https://drive.google.com/file/d/1_VoPueYtShclhTAu-zxVts18P5R7LaCl/view?usp=sharing] and unzip it.
Then run:
python eval_standard.py <output_dir> --gpu --checkpoint pretrained_weights/cvpr2022.pth --uncalibrated --calib_net_checkpoint pretrained_weights/cal_cvpr2022.pth --dataset_root <path to our dataset>
The easiest way to test on your own dataset is to format it similarly to our dataset:
dataset_dir:
- sample_name1:
- image1.jpg
- image2.jpg
- frame3.jpg
- mask.png
- intrinsic.txt
- sample_name2:
- ...
For an example of formating your own dataset please look at our dataset
Then run:
python eval_standard.py <output_dir> --gpu --checkpoint pretrained_weights/cvpr2022.pth --uncalibrated --calib_net_checkpoint pretrained_weights/cal_cvpr2022.pth --dataset_root <path to your dataset>
Download our synthetic data from [https://drive.google.com/file/d/1ofQrSup0BrZKs456SuMZW84yBbIP1jrq/view?usp=sharing] and unzip it. Download the MERL BRDF dataset from [https://cdfg.csail.mit.edu/wojciech/brdfdatabase].
To train the main network from scratch run:
python train.py <log_dir> --gpu --syn_dataset_root <path to our synthetic dataset> --merl_path <path to merl dataset> --batch_size 8 --num_train_lights 10
To train the calibration network from scratch run:
python train_calibration_net.py <log_dir> --gpu --syn_dataset_root <path to our synthetic dataset> --merl_path <path to merl dataset> --batch_size 16 --num_train_lights 10
- Please create an issue if you encounter errors when trying to run the code. Please also feel free to submit a bug report.
If you find this code or the provided models useful in your research, please cite it as:
@inproceedings{lichy_2022,
title={Fast Light-Weight Near-Field Photometric Stereo},
author={Lichy, Daniel and Sengupta, Soumyadip and Jacobs, David W.},
booktitle={CVPR},
year={2022}
}
-
Code for the lighting calibration network is adapted from https://github.com/guanyingc/SDPS-Net
-
Code for normal integration and loading the LUCES dataset is adapted from https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/luces