Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove analysis_utils.py #506

Merged
merged 1 commit into from
Mar 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion src/kbmod/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,12 @@
except ImportError:
warnings.warn("Unable to determine the package version. " "This is likely a broken installation.")

# This is needed for compatibility with some older compilers: erfinv needs to be
# imported before other packages though I'm not sure why.
from scipy.special import erfinv

from . import (
analysis,
analysis_utils,
data_interface,
file_utils,
filters,
Expand Down
118 changes: 0 additions & 118 deletions src/kbmod/analysis_utils.py

This file was deleted.

8 changes: 7 additions & 1 deletion src/kbmod/filters/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,7 @@
from . import base_filter, stamp_filters, stats_filters
from . import (
base_filter,
clustering_filters,
sigma_g_filter,
stamp_filters,
stats_filters,
)
148 changes: 115 additions & 33 deletions src/kbmod/run_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,12 @@

import kbmod.search as kb

from .analysis_utils import PostProcess
from .configuration import SearchConfiguration
from .data_interface import load_input_from_config, load_input_from_file
from .filters.clustering_filters import apply_clustering
from .filters.sigma_g_filter import SigmaGClipping
from .filters.sigma_g_filter import apply_clipped_sigma_g, SigmaGClipping
from .filters.stamp_filters import append_all_stamps, get_coadds_and_filter
from .filters.stats_filters import CombinedStatsFilter
from .masking import apply_mask_operations
from .result_list import *
from .trajectory_generator import KBMODV1Search
Expand Down Expand Up @@ -43,24 +43,121 @@ def get_angle_limits(self, config):
ang_max = config["average_angle"] + config["ang_arr"][1]
return [ang_min, ang_max]

def do_gpu_search(self, config, search, trj_generator):
def load_and_filter_results(self, search, config):
"""This function loads results that are output by the gpu grid search.
Results are loaded in chunks and evaluated to see if the minimum
likelihood level has been reached. If not, another chunk of results is
fetched. The results are filtered using a clipped-sigmaG filter as they
are loaded and only the passing results are kept.

Parameters
----------
search : `kbmod.search`
The search function object.
config : `SearchConfiguration`
The configuration parameters
chunk_size : int
The number of results to load at a given time from search.

Returns
-------
keep : `ResultList`
A ResultList object containing values from trajectories.
"""
Performs search on the GPU.
# Parse and check the configuration parameters.
num_obs = config["num_obs"]
sigmaG_lims = config["sigmaG_lims"]
clip_negative = config["clip_negative"]
lh_level = config["lh_level"]
max_lh = config["max_lh"]
chunk_size = config["chunk_size"]
if chunk_size <= 0:
raise ValueError(f"Invalid chunk size {chunk_size}")
num_cores = config["num_cores"]
if num_cores <= 0:
raise ValueError(f"Invalid number of cores {num_cores}")

# Set up the list of results.
img_stack = search.get_imagestack()
num_times = img_stack.img_count()
mjds = [img_stack.get_obstime(t) for t in range(num_times)]
keep = ResultList(mjds)

# Set up the clipped sigmaG filter.
if sigmaG_lims is not None:
bnds = sigmaG_lims
else:
bnds = [25, 75]
clipper = SigmaGClipping(bnds[0], bnds[1], 2, clip_negative)

# Set up the combined stats filter.
if lh_level > 0.0:
stats_filter = CombinedStatsFilter(min_obs=num_obs, min_lh=lh_level)
else:
stats_filter = CombinedStatsFilter(min_obs=num_obs)

print("---------------------------------------")
print("Retrieving Results")
print("---------------------------------------")
likelihood_limit = False
res_num = 0
total_count = 0
while likelihood_limit is False:
print("Getting results...")
results = search.get_results(res_num, chunk_size)
print("---------------------------------------")
print("Chunk Start = %i" % res_num)
print("Chunk Max Likelihood = %.2f" % results[0].lh)
print("Chunk Min. Likelihood = %.2f" % results[-1].lh)
print("---------------------------------------")

result_batch = ResultList(mjds)
for i, trj in enumerate(results):
# Stop as soon as we hit a result below our limit, because anything after
# that is not guarrenteed to be valid due to potential on-GPU filtering.
if trj.lh < lh_level:
likelihood_limit = True
break

if trj.lh < max_lh:
row = ResultRow(trj, num_times)
psi_curve = np.array(search.get_psi_curves(trj))
phi_curve = np.array(search.get_phi_curves(trj))
row.set_psi_phi(psi_curve, phi_curve)
result_batch.append_result(row)
total_count += 1

batch_size = result_batch.num_results()
print("Extracted batch of %i results for total of %i" % (batch_size, total_count))
if batch_size > 0:
apply_clipped_sigma_g(clipper, result_batch, num_cores)
result_batch.apply_filter(stats_filter)

# Add the results to the final set.
keep.extend(result_batch)
res_num += chunk_size
return keep

def do_gpu_search(self, config, stack, trj_generator):
"""Performs search on the GPU.

Parameters
----------
config : `SearchConfiguration`
The configuration parameters
search : `StackSearch`
The C++ object that holds data and does searching.
trj_generator : `TrajectoryGenerator`, optional
stack : `ImageStack`
The stack before the masks have been applied. Modified in-place.
trj_generator : `TrajectoryGenerator`
The object to generate the candidate trajectories for each pixel.

Returns
-------
search : `StackSearch`
The C++ object holding the data and results.
keep : `ResultList`
The results.
"""
# Create the search object which will hold intermediate data and results.
search = kb.StackSearch(stack)

width = search.get_image_width()
height = search.get_image_height()
debug = config["debug"]
Expand All @@ -77,9 +174,6 @@ def do_gpu_search(self, config, search, trj_generator):
search.set_start_bounds_y(-config["y_pixel_buffer"], height + config["y_pixel_buffer"])

search_timer = kb.DebugTimer("Grid Search", debug)
if debug:
print(f"Average Angle = {config['average_angle']}")
print(f"Velocity Limits = {config['v_arr']}")

# If we are using gpu_filtering, enable it and set the parameters.
if config["gpu_filter"]:
Expand Down Expand Up @@ -108,7 +202,10 @@ def do_gpu_search(self, config, search, trj_generator):
candidates = [trj for trj in trj_generator]
search.search(candidates, int(config["num_obs"]))
search_timer.stop()
return search

# Load the results.
keep = self.load_and_filter_results(search, config)
return keep

def run_search(self, config, stack, trj_generator=None):
"""This function serves as the highest-level python interface for starting
Expand All @@ -131,20 +228,11 @@ def run_search(self, config, stack, trj_generator=None):
"""
full_timer = kb.DebugTimer("KBMOD", config["debug"])

# Collect the MJDs.
mjds = []
for i in range(stack.img_count()):
mjds.append(stack.get_obstime(i))

# Set up the post processing data structure.
kb_post_process = PostProcess(config, mjds)

# Apply the mask to the images.
if config["do_mask"]:
stack = apply_mask_operations(config, stack)

# Perform the actual search.
search = kb.StackSearch(stack)
if trj_generator is None:
ang_limits = self.get_angle_limits(config)
trj_generator = KBMODV1Search(
Expand All @@ -155,27 +243,21 @@ def run_search(self, config, stack, trj_generator=None):
ang_limits[0],
ang_limits[1],
)
search = self.do_gpu_search(config, search, trj_generator)

# Load the KBMOD results into Python and apply a filter based on 'filter_type'.
keep = kb_post_process.load_and_filter_results(
search,
config["lh_level"],
chunk_size=config["chunk_size"],
max_lh=config["max_lh"],
)
keep = self.do_gpu_search(config, stack, trj_generator)

if config["do_stamp_filter"]:
stamp_timer = kb.DebugTimer("stamp filtering", config["debug"])
get_coadds_and_filter(
keep,
search.get_imagestack(),
stack,
config,
debug=config["debug"],
)
stamp_timer.stop()

if config["do_clustering"]:
cluster_timer = kb.DebugTimer("clustering", config["debug"])
mjds = [stack.get_obstime(t) for t in range(stack.img_count())]
cluster_params = {
"ang_lims": self.get_angle_limits(config),
"cluster_type": config["cluster_type"],
Expand All @@ -191,7 +273,7 @@ def run_search(self, config, stack, trj_generator=None):
# Extract all the stamps for all time steps and append them onto the result rows.
if config["save_all_stamps"]:
stamp_timer = kb.DebugTimer("computing all stamps", config["debug"])
append_all_stamps(keep, search.get_imagestack(), config["stamp_radius"])
append_all_stamps(keep, stack, config["stamp_radius"])
stamp_timer.stop()

# TODO - Re-enable the known object counting once we have a way to pass
Expand Down
Loading
Loading