Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixing broken examples and import errors #477

Merged
merged 8 commits into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 1 addition & 25 deletions docs/usage/06_concept_learners.md
Original file line number Diff line number Diff line change
Expand Up @@ -363,28 +363,4 @@ you pass this url to `triplestore_address` argument, you have to add the

You can now create a triplestore knowledge base or a reasoner that uses this URL for their
operations:

```python
from ontolearn.triple_store import TripleStoreKnowledgeBase

father_kb = TripleStoreKnowledgeBase("http://localhost:3030/father/sparql")

# ** Continue to execute the learning algorithm as you normally do. ** .
```

-------------------------------------------------------------------


In this guide, we have shown the prerequisites of running a concept learner,
how to configure it's input properties and how to run it to successfully
learn class expressions for learning problems in an ontology. We showed as well how to set up
a triplestore server that can be used to execute the concept learner. There is also a jupyter
notebook for each of these concept learners:

- [NCES notebook](https://github.com/dice-group/Ontolearn/blob/develop/examples/simple-usage-NCES.ipynb)
- [CLIP notebook](https://github.com/dice-group/Ontolearn/blob/develop/examples/clip_notebook.ipynb)
- [DRILL notebook](https://github.com/dice-group/Ontolearn/blob/develop/examples/drill_notebook.ipynb)
- [EvoLearner notebook](https://github.com/dice-group/Ontolearn/blob/develop/examples/evolearner_notebook.ipynb)
- [CELOE notebook](https://github.com/dice-group/Ontolearn/blob/develop/examples/celoe_notebook.ipynb)
- [OCEL notebook](https://github.com/dice-group/Ontolearn/blob/develop/examples/ocel_notebook.ipynb)
- [TDL example](https://github.com/dice-group/Ontolearn/blob/develop/examples/concept_learning_with_tdl_and_triplestore_kb.py)
TODO
224 changes: 47 additions & 177 deletions examples/concept_learning_neural_evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,92 +15,36 @@
import platform
import pandas as pd
from ontolearn.knowledge_base import KnowledgeBase
from ontolearn.concept_learner import CELOE, OCEL, EvoLearner, NCES, CLIP
from ontolearn.learners import CELOE, OCEL, Drill, TDL
from ontolearn.concept_learner import EvoLearner, NCES, CLIP
from ontolearn.refinement_operators import ExpressRefinement
from ontolearn.learners import Drill, TDL
from ontolearn.learning_problem import PosNegLPStandard
from ontolearn.metrics import F1
from owlapy.owl_individual import OWLNamedIndividual, IRI
import argparse
from sklearn.model_selection import StratifiedKFold
import numpy as np

from ontolearn.utils.static_funcs import compute_f1_score
from ontolearn.triple_store import TripleStore

from ontolearn.owl_neural_reasoner import TripleStoreNeuralReasoner

from owlapy import owl_expression_to_dl

pd.set_option("display.precision", 5)


def get_embedding_path(ftp_link: str, embeddings_path_arg, kb_path_arg: str):
if embeddings_path_arg is None or (
embeddings_path_arg is not None and not os.path.exists(embeddings_path_arg)
):
file_name = ftp_link.split("/")[-1]
if not os.path.exists(os.path.join(os.getcwd(), file_name)):
subprocess.run(["curl", "-O", ftp_link])

if platform.system() == "Windows":
subprocess.run(["tar", "-xf", file_name])
else:
subprocess.run(["unzip", file_name])
os.remove(os.path.join(os.getcwd(), file_name))

embeddings_path = os.path.join(os.getcwd(), file_name[:-4] + "/")

if "family" in kb_path_arg:
embeddings_path += "family/embeddings/ConEx_entity_embeddings.csv"
elif "carcinogenesis" in kb_path_arg:
embeddings_path += "carcinogenesis/embeddings/ConEx_entity_embeddings.csv"
elif "mutagenesis" in kb_path_arg:
embeddings_path += "mutagenesis/embeddings/ConEx_entity_embeddings.csv"
elif "nctrer" in kb_path_arg:
embeddings_path += "nctrer/embeddings/ConEx_entity_embeddings.csv"
elif "animals" in kb_path_arg:
embeddings_path += "animals/embeddings/ConEx_entity_embeddings.csv"
elif "lymphography" in kb_path_arg:
embeddings_path += "lymphography/embeddings/ConEx_entity_embeddings.csv"
elif "semantic_bible" in kb_path_arg:
embeddings_path += "semantic_bible/embeddings/ConEx_entity_embeddings.csv"
elif "suramin" in kb_path_arg:
embeddings_path += "suramin/embeddings/ConEx_entity_embeddings.csv"
elif "vicodi" in kb_path_arg:
embeddings_path += "vicodi/embeddings/ConEx_entity_embeddings.csv"

return embeddings_path
else:
return embeddings_path_arg


def dl_concept_learning(args):
with open(args.lps) as json_file:
settings = json.load(json_file)

# To compute the "original quality". RDF KGs provied in ontolearn are complete and consistent.
# So we can use kb to compute the original quality

kb = KnowledgeBase(path=args.kb)
drill_with_symbolic_retriever = Drill(
knowledge_base=kb,
path_embeddings=args.path_drill_embeddings,
quality_func=F1(),
max_runtime=args.max_runtime,
verbose=0,
)
drill_with_symbolic_retriever = Drill(knowledge_base=kb, path_embeddings=args.path_drill_embeddings,
quality_func=F1(), max_runtime=args.max_runtime,verbose=0)

neural_kb = TripleStore(
reasoner=TripleStoreNeuralReasoner(path_neural_embedding=args.kge)
)
neural_kb = TripleStore(reasoner=TripleStoreNeuralReasoner(path_neural_embedding=args.kge))

drill_with_neural_retriever = Drill(
knowledge_base=neural_kb,
path_embeddings=args.path_drill_embeddings,
quality_func=F1(),
max_runtime=args.max_runtime,
verbose=0,
)
drill_with_neural_retriever = Drill(knowledge_base=neural_kb,
path_embeddings=args.path_drill_embeddings,
quality_func=F1(), max_runtime=args.max_runtime, verbose=0)

# dictionary to store the data
data = dict()
Expand All @@ -112,14 +56,13 @@ def dl_concept_learning(args):
problems = settings.items()
positives_key = "positive examples"
negatives_key = "negative examples"

for str_target_concept, examples in problems:
print("Target concept: ", str_target_concept)
p = examples[positives_key]
n = examples[negatives_key]

kf = StratifiedKFold(
n_splits=args.folds, shuffle=True, random_state=args.random_seed
)
kf = StratifiedKFold(n_splits=args.folds, shuffle=True, random_state=args.random_seed)
X = np.array(p + n)
y = np.array([1.0 for _ in p] + [0.0 for _ in n])

Expand All @@ -128,175 +71,102 @@ def dl_concept_learning(args):
data.setdefault("LP", []).append(str_target_concept)
data.setdefault("Fold", []).append(ith)
# () Extract positive and negative examples from train fold
train_pos = {
pos_individual for pos_individual in X[train_index][y[train_index] == 1]
}
train_neg = {
neg_individual for neg_individual in X[train_index][y[train_index] == 0]
}
train_pos = {pos_individual for pos_individual in X[train_index][y[train_index] == 1]}
train_neg = {neg_individual for neg_individual in X[train_index][y[train_index] == 0]}

# Sanity checking for individuals used for training.
assert train_pos.issubset(examples[positives_key])
assert train_neg.issubset(examples[negatives_key])

# () Extract positive and negative examples from test fold
test_pos = {
pos_individual for pos_individual in X[test_index][y[test_index] == 1]
}
test_neg = {
neg_individual for neg_individual in X[test_index][y[test_index] == 0]
}
test_pos = {pos_individual for pos_individual in X[test_index][y[test_index] == 1]}
test_neg = {neg_individual for neg_individual in X[test_index][y[test_index] == 0]}

# Sanity checking for individuals used for testing.
assert test_pos.issubset(examples[positives_key])
assert test_neg.issubset(examples[negatives_key])
train_lp = PosNegLPStandard(
pos={OWLNamedIndividual(i) for i in train_pos},
neg={OWLNamedIndividual(i) for i in train_neg},
)
neg={OWLNamedIndividual(i) for i in train_neg})

test_lp = PosNegLPStandard(
pos={OWLNamedIndividual(i) for i in test_pos},
neg={OWLNamedIndividual(i) for i in test_neg},
)
neg={OWLNamedIndividual(i) for i in test_neg})
print("DRILL Symbolic starts..", end=" ")
start_time = time.time()
# Prediction of DRILL through symbolic retriever.
pred_symbolic_drill = drill_with_symbolic_retriever.fit(
train_lp
).best_hypotheses()
pred_symbolic_drill = drill_with_symbolic_retriever.fit(train_lp).best_hypotheses()
symbolic_rt_drill = time.time() - start_time
print("DRILL Symbolic ends..", end="\t")
# Quality of prediction through symbolic retriever on the train split.
symbolic_train_f1_drill = compute_f1_score(
individuals=frozenset({i for i in kb.individuals(pred_symbolic_drill)}),
pos=train_lp.pos,
neg=train_lp.neg,
)
neg=train_lp.neg)
# Quality of prediction through symbolic retriever on the test split.
symbolic_test_f1_drill = compute_f1_score(
individuals=frozenset({i for i in kb.individuals(pred_symbolic_drill)}),
pos=test_lp.pos,
neg=test_lp.neg,
)
print(
f"DRILL Symbolic Train Quality: {symbolic_train_f1_drill:.3f}", end="\t"
)
print(
f"DRILL Symbolic Test Quality: {symbolic_test_f1_drill:.3f}", end="\t"
)
neg=test_lp.neg)
print(f"DRILL Symbolic Train Quality: {symbolic_train_f1_drill:.3f}", end="\t")
print(f"DRILL Symbolic Test Quality: {symbolic_test_f1_drill:.3f}", end="\t")
print(f"DRILL Symbolic Runtime: {symbolic_rt_drill:.3f}", end="\t")
print(f"Prediction: {owl_expression_to_dl(pred_symbolic_drill)}")

data.setdefault("Train-F1-Symbolic-DRILL", []).append(
symbolic_train_f1_drill
)
data.setdefault("Train-F1-Symbolic-DRILL", []).append(symbolic_train_f1_drill)
data.setdefault("Test-F1-Symbolic-DRILL", []).append(symbolic_test_f1_drill)
data.setdefault("RT-Symbolic-DRILL", []).append(symbolic_rt_drill)
data.setdefault("Prediction-Symbolic-DRILL", []).append(
owl_expression_to_dl(pred_symbolic_drill)
)
data.setdefault("Prediction-Symbolic-DRILL", []).append(owl_expression_to_dl(pred_symbolic_drill))

print("DRILL Neural starts..", end="\t")
print("DRILL Neural starts..", end=" ")
start_time = time.time()
# Prediction of DRILL through neural retriever.
pred_neural_drill = drill_with_neural_retriever.fit(
train_lp
).best_hypotheses()
# Prediction of DRILL through symbolic retriever.
pred_neural_drill = drill_with_neural_retriever.fit(train_lp).best_hypotheses()
neural_rt_drill = time.time() - start_time
print("DRILL Neural ends..", end="\t")
# Quality of prediction through neural retriever on the train split.
neural_train_f1_drill = compute_f1_score(
individuals=frozenset(
{i for i in neural_kb.individuals(pred_neural_drill)}
),
pos=train_lp.pos,
neg=train_lp.neg,
)
# Quality of prediction through neural retriever on the test split.
neural_test_f1_drill = compute_f1_score(
individuals=frozenset(
{i for i in neural_kb.individuals(pred_neural_drill)}
),
pos=test_lp.pos,
neg=test_lp.neg,
)
# Quality of prediction through symbolic retriever on the train split.
neural_symbolic_train_f1_drill = compute_f1_score(
individuals=frozenset({i for i in kb.individuals(pred_neural_drill)}),
neural_train_f1_drill = compute_f1_score(
individuals=frozenset({i for i in neural_kb.individuals(pred_neural_drill)}),
pos=train_lp.pos,
neg=train_lp.neg,
)
neg=train_lp.neg)
# Quality of prediction through symbolic retriever on the test split.
neural_symbolic_test_f1_drill = compute_f1_score(
individuals=frozenset({i for i in kb.individuals(pred_neural_drill)}),
neural_test_f1_drill = compute_f1_score(
individuals=frozenset({i for i in neural_kb.individuals(pred_neural_drill)}),
pos=test_lp.pos,
neg=test_lp.neg,
)

# Quality of prediction w.r.t. neural retriever on the train split.
neg=test_lp.neg)
print(f"DRILL Neural Train Quality: {neural_train_f1_drill:.3f}", end="\t")
# Quality of prediction w.r.t. neural retriever on the test split.
print(f"DRILL Neural Test Quality: {neural_test_f1_drill:.3f}", end="\t")

# Quality of prediction w.r.t. symbolic retriever on the train split.
print(
f"DRILL Neural-Symbolic-Train Quality: {neural_symbolic_train_f1_drill:.3f}",
end="\t",
)
# Quality of prediction w.r.t. symbolic retriever on the test split.
print(
f"DRILL Neural-Symbolic-Test Quality: {neural_symbolic_test_f1_drill:.3f}",
end="\t",
)

print(f"DRILL Neural Runtime: {neural_rt_drill:.3f}", end="\t")
print(f"Prediction: {owl_expression_to_dl(pred_neural_drill)}")

data.setdefault("Train-F1-Neural-Symbolic-DRILL", []).append(
neural_symbolic_train_f1_drill
)
data.setdefault("Test-F1-Neural-Symbolic-DRILL", []).append(
neural_symbolic_test_f1_drill
)

data.setdefault("Train-F1-Neural-DRILL", []).append(neural_train_f1_drill)
data.setdefault("Test-F1-Neural-DRILL", []).append(neural_test_f1_drill)

data.setdefault("RT-Neural-DRILL", []).append(neural_rt_drill)
data.setdefault("Prediction-Symbolic-DRILL", []).append(
owl_expression_to_dl(pred_neural_drill)
)
data.setdefault("Prediction-Neural-DRILL", []).append(owl_expression_to_dl(pred_neural_drill))

print(data)
df = pd.DataFrame.from_dict(data)
df.to_csv(args.report, index=False)
print(df)
print(df.select_dtypes(include="number").mean())

assert df.select_dtypes(include="number").mean()["Train-F1-Symbolic-DRILL"] >= 0.90



if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="OWL Class Expression Learning with Neural Reasoner"
)
parser.add_argument(
"--lps", type=str, required=True, help="Path to the learning problems"
)
parser.add_argument(
"--folds", type=int, default=10, help="Number of folds of cross validation."
)
parser.add_argument("--kb", type=str, required=True, help="Knowledge base")
parser.add_argument(
"--kge",
type=str,
required=True,
default=None,
help="Knowledge Graph Embedding Path",
)
# python examples/concept_learning_neural_evaluation.py --lps LPs/Family/lps.json --kb KGs/Family/family-benchmark_rich_background.owl --kge KeciFamilyRun --max_runtime 3 --report family.csv
parser = argparse.ArgumentParser(description="OWL Class Expression Learning with Neural Reasoner")
parser.add_argument("--lps", type=str, default="/home/cdemir/Desktop/Softwares/Ontolearn/LPs/Family/lps.json",
help="Path to the learning problems")
parser.add_argument("--folds", type=int, default=2, help="Number of folds of cross validation.")
parser.add_argument("--kb", type=str, default="/home/cdemir/Desktop/Softwares/Ontolearn/KGs/Family/family-benchmark_rich_background.owl", help="Knowledge base")
parser.add_argument("--kge",type=str,default="/home/cdemir/Desktop/Softwares/Ontolearn/KeciFamilyRun",
help="Knowledge Graph Embedding Path")

parser.add_argument("--path_drill_embeddings", type=str, default=None)
parser.add_argument("--path_of_nces_embeddings", type=str, default=None)
parser.add_argument("--path_of_clip_embeddings", type=str, default=None)
parser.add_argument("--report", type=str, default="report.csv")
parser.add_argument("--max_runtime", type=int, default=10, help="Max runtime")
parser.add_argument("--max_runtime", type=int, default=1, help="Max runtime")
parser.add_argument("--random_seed", type=int, default=1)
dl_concept_learning(parser.parse_args())
Loading
Loading