[NeurIPS 2022] This is an implementation of SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with Alternate Training
- A resourceful server with labeled data can significantly improve its learning performance by working with distributed clients with unlabeled data without data sharing.
See requirements.txt
- Global hyperparameters are configured in
config.yml
- Use
make.sh
to generate run script - Use
make.py
to generate exp script - Use
process.py
to process exp results - Experimental setup are listed in
make.py
- Hyperparameters can be found at
process_control()
in utils.py modules/modules.py
defines Server and Client- sBN statistics are updated in
distribute()
of Server - global momemtum is used in
update()
of Server - fix and mix dataset are constructed in
make_dataset()
of Client
- sBN statistics are updated in
- The data are split at
split_dataset()
indata.py
- Train SemiFL for CIFAR10 dataset (WResNet28x2,
$N_\mathcal{S}=4000$ , fix ($\tau=0.95$ ) and mix loss,$M=100$ ,$C=0.1$ , IID,$E=5$ , global mometum$0.5$ , server and client sBN statistics, finetune)python train_classifier_ssfl.py --data_name CIFAR10 --model_name wresnet28x2 --control_name 4000_fix@0.95-mix_100_0.1_iid_5-5_0.5_1_1
- Train SemiFL for CIFAR10 dataset (WResNet28x2,
$N_\mathcal{S}=250$ , fix ($\tau=0.95$ ) and mix loss,$M=100$ ,$C=0.1$ , Non-IID ($K=2$ ),$E=5$ , global mometum$0.5$ , server and client sBN statistics, finetune)python train_classifier_ssfl.py --data_name CIFAR10 --model_name wresnet28x2 --control_name 250_fix@0.95-mix_100_0.1_non-iid-l-2_5-5_0.5_1_1
- Test SemiFL for SVHN dataset (WResNet28x2,
$N_\mathcal{S}=1000$ , fix ($\tau=0.95$ ) loss,$M=100$ ,$C=0.1$ , Non-IID ($Dir(0.3)$ ),$E=5$ , global mometum$0.5$ , server only sBN statistics, finetune)python test_classifier_ssfl.py --data_name SVHN --model_name wresnet28x2 --control_name 1000_fix@0.95_100_0.1_non-iid-d-0.3_5-5_0.5_0_1
- Results of CIFAR10 dataset with (a)
$N_{\mathcal{S}} = 250$ and (b)$N_{\mathcal{S}} = 4000$ .
Enmao Diao
Jie Ding
Vahid Tarokh