- 딥러닝을 위한 파이썬 : python_for_deep_leaarning.md
- 딥러닝을 위한 라이브러리 : library_for_deep_leaarning.md
- 딥러닝 : deep_learning.md
Environment
jupyter
colab
usage
!, %, run
GCP virtual machine
linux
ENV
command
cd, pwd, ls
mkdir, rm, cp
head, more, tail, cat
util
apt
git, wget
grep, wc, tree
tar, unrar, unzip
gpu
nvidia-smi
python
env
python
interactive
execute file
pip
syntax
variable
data
tuple
list
dict
set
loop
if
comprehensive list
function
class
module
import
libray
numpy
load
operation
shape
slicing
reshape
axis + sum, mean
pandas
load
view
search
operation
to numpy
전처리
결측치 처리
이상치 처리
카테고리 데이터 인코딩
normalization
matplot
draw line graph
scatter
show image
Seaborn
histogram
scatter
line
box
Deep Learning
DNN
concept
layer, node, weight, bias, activation
cost function
GD, BP
data
x, y
train, validate, test
shuffle
learning curve : accuracy, loss
tuning
overfitting, underfitting
dropout, batch normalization, regularization
data augmentation
Transfer Learning
type
supervised
unsupervised
reinforcement
model
CNN
vanilla, named CNN
RNN
GAN
task
Classification
Object Detection
Generation
Segmentation
Pose Extraction
Noise Removing
Super Resolution
Question answering
Auto Captioning
Style Transfer
Image Tranlation
data type
attribute data
image data
natural language data
sequence data(time serial)
TensorFlow/Keras
basic frame
data preparing
x, y
train, valid, test
normalization
ImageDataGenerator
fit
evaluate
predict
model
activation function
initializer
tuning
learning rate decay
regularizer
dropout
batch normalization
save/load
compile
model architecture
optimizer
loss
metric