forked from wolfSSL/wolfBoot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnxp_ls1028a.c
888 lines (718 loc) · 22.3 KB
/
nxp_ls1028a.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/* nxp_ls1028a.c
*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include <string.h>
#include <target.h>
#include "image.h"
#include "printf.h"
#ifdef TARGET_nxp_ls1028a
#ifndef ARCH_AARCH64
# error "wolfBoot ls1028a HAL: wrong architecture selected. Please compile with ARCH=AARCH64."
#endif
#include "nxp_ls1028a.h"
/* HAL options */
#define ENABLE_DDR
#define BAUD_RATE 115200
#define UART_SEL 0 /* select UART 0 or 1 */
void hal_flash_init(void);
void switch_el3_to_el2(void);
extern void mmu_enable(void);
#ifdef DEBUG_UART
void uart_init(void)
{
/* calc divisor for UART
* example config values:
* clock_div, baud, base_clk 163 115200 400000000
* +0.5 to round up
*/
uint32_t div = (((SYS_CLK / 2.0) / (16 * BAUD_RATE)) + 0.5);
while (!(UART_LSR(UART_SEL) & UART_LSR_TEMT));
/* set ier, fcr, mcr */
UART_IER(UART_SEL) = 0;
UART_FCR(UART_SEL) = (UART_FCR_TFR | UART_FCR_RFR | UART_FCR_FEN);
/* enable baud rate access (DLAB=1) - divisor latch access bit*/
UART_LCR(UART_SEL) = (UART_LCR_DLAB | UART_LCR_WLS);
/* set divisor */
UART_DLB(UART_SEL) = (div & 0xff);
UART_DMB(UART_SEL) = ((div>>8) & 0xff);
/* disable rate access (DLAB=0) */
UART_LCR(UART_SEL) = (UART_LCR_WLS);
}
void uart_write(const char* buf, uint32_t sz)
{
uint32_t pos = 0;
while (sz-- > 0) {
char c = buf[pos++];
if (c == '\n') { /* handle CRLF */
while (!(UART_LSR(UART_SEL) & UART_LSR_THRE));
UART_THR(UART_SEL) = '\r';
}
while (!(UART_LSR(UART_SEL) & UART_LSR_THRE));
UART_THR(UART_SEL) = c;
}
}
#endif /* DEBUG_UART */
/* SPI interface */
/* Clear and halt the SPI controller*/
static void spi_close(unsigned int sel)
{
/* Halt, flush and set as master */
SPI_MCR(sel) = SPI_MCR_MASTER_HALT;
}
/*Clear the SPI controller and setup as a running master*/
static void spi_open(unsigned int sel)
{
spi_close(sel);
/* Setup CTAR0 */
SPI_CTAR0(sel) = SPI_CTAR_8_00MODE_8DIV;
/* Enable as master */
SPI_MCR(sel) = SPI_MCR_MASTER_RUNNING;
}
static int spi_can_rx(unsigned int sel)
{
return !!(SPI_SR(sel) & SPI_SR_RXCTR);
}
static unsigned char spi_pop_rx(unsigned int sel)
{
return SPI_POPR(sel) & 0xFF;
}
static void spi_flush_rx(unsigned int sel)
{
unsigned char rx_data;
while (spi_can_rx(sel)) {
rx_data = spi_pop_rx(sel);
}
(void) rx_data;
}
static int spi_can_tx(unsigned int sel)
{
return !!(SPI_SR(sel) & SPI_SR_TFFF);
}
static void spi_push_tx(unsigned int sel, unsigned int pcs, unsigned char data,
int last)
{
SPI_PUSHR(sel) = (last ? SPI_PUSHR_LAST : SPI_PUSHR_CONT)
| SPI_PUSHR_PCS(pcs) | data;
}
/* Perform a SPI transaction. Set cont!=0 to not let CS go low after this*/
static void spi_transaction(unsigned int sel, unsigned int pcs,
const unsigned char *out, unsigned char *in, unsigned int size,
int cont)
{
unsigned int tx_count = size;
unsigned int rx_count = size;
int last = 0;
unsigned char rx_data = 0;
unsigned char tx_data = 0;
/* XXX No parameter validation */
/* Flush RX FIFO */
spi_flush_rx(sel);
/* Nothing to do? */
if (!size)
return;
while (rx_count > 0) {
/* Try to push TX data */
while ((tx_count > 0) && ((rx_count - tx_count) < SPI_FIFO_DEPTH)
&& spi_can_tx(sel)) {
if (out) {
tx_data = *out;
out++;
}
tx_count--;
last = (!cont && !tx_count);
spi_push_tx(sel, pcs, tx_data, last);
}
/* Try to pop RX data */
while ((rx_count > 0) && spi_can_rx(sel)) {
rx_data = spi_pop_rx(sel);
if (in) {
*in = rx_data;
in++;
}
rx_count--;
}
}
}
/*#define TPM_TEST*/
#ifdef TPM_TEST
void read_tpm_id(void)
{
/* Read 4 bytes from offset D40F00. Assumes 0 wait state on TPM */
unsigned char out[8] = { 0x83, 0xD4, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00 };
unsigned char in[8] = { 0 };
unsigned char in2[8] = { 0 };
unsigned int counter;
/* LS1028A SPI to the MikroBus uses SPI3 (sel is 2) and CS 0 */
#ifndef SPI_SEL_TPM
#define SPI_SEL_TPM 2
#endif
#ifndef SPI_CS_TPM
#define SPI_CS_TPM 0
#endif
spi_open(SPI_SEL_TPM);
/* Single transaction */
spi_transaction(SPI_SEL_TPM, SPI_CS_TPM, out, in, sizeof(out), 0);
/* Use individual transactions with cont set */
for (counter = 0; counter < (sizeof(out) - 1); counter++) {
spi_transaction(SPI_SEL_TPM, SPI_CS_TPM, &out[counter], &in2[counter], 1,
1);
}
spi_transaction(SPI_SEL_TPM, SPI_CS_TPM, &out[counter], &in2[counter], 1, 0);
spi_close(SPI_SEL_TPM);
(void) in;
(void) in2;
}
#endif
void nxp_ls1028a_spi_init(unsigned int sel)
{
/* TODO: Expose more configuration options */
spi_open(sel);
}
int nxp_ls1028a_spi_xfer(unsigned int sel, unsigned int cs,
const unsigned char *out, unsigned char *in,
unsigned int size, int cont)
{
/* TODO Make spi_transaction actually return errors */
spi_transaction(sel, cs, out, in, size, cont);
return 0;
}
void nxp_ls1028a_spi_deinit(unsigned int sel)
{
spi_close(sel);
}
void hal_delay_us(uint32_t us) {
uint64_t delay = (uint64_t)SYS_CLK * us / 1000000;
volatile uint32_t i = 0;
for (i = 0; i < delay; i++) {
asm volatile("nop");
}
}
/* Fixed addresses */
static const void* kernel_addr = (void*)WOLFBOOT_PARTITION_BOOT_ADDRESS;
static const void* update_addr = (void*)WOLFBOOT_PARTITION_UPDATE_ADDRESS;
void* hal_get_primary_address(void)
{
return (void*)kernel_addr;
}
void* hal_get_update_address(void)
{
return (void*)update_addr;
}
void* hal_get_dts_address(void)
{
return (void*)WOLFBOOT_LOAD_DTS_ADDRESS;
}
void* hal_get_dts_update_address(void)
{
return (void*)NULL;
}
void erratum_err050568(void)
{
/* Use IP bus only if systembus PLL is 300MHz (Dont use 300MHz) */
}
/* Application on Serial NOR Flash device 18.6.3 */
void xspi_init(void)
{
/* Configure module control register */
XSPI_MCR0 = XSPI_MCR0_CFG;
XSPI_MCR1 = XSPI_MCR1_CFG;
XSPI_MCR2 = XSPI_MCR2_CFG;
/* Clear RX/TX fifos */
XSPI_IPRXFCR = XSPI_IPRXFCR_CFG; /* Note: RX/TX Water Mark can be set here default is 64bit */
XSPI_IPTXFCR = XSPI_IPTXFCR_CFG; /* Increase size to reduce transfer requests */
/* Configure AHB bus control register (AHBCR) and AHB RX Buffer control register (AHBRXBUFxCR0) */
XSPI_AHBCR = XSPI_AHBCR_CFG;
XSPI_AHBRXBUFnCR0(0) = XSPI_AHBRXBUF0CR_CFG;
XSPI_AHBRXBUFnCR0(1) = XSPI_AHBRXBUF1CR_CFG;
XSPI_AHBRXBUFnCR0(2) = XSPI_AHBRXBUF2CR_CFG;
XSPI_AHBRXBUFnCR0(3) = XSPI_AHBRXBUF3CR_CFG;
XSPI_AHBRXBUFnCR0(4) = XSPI_AHBRXBUF4CR_CFG;
XSPI_AHBRXBUFnCR0(5) = XSPI_AHBRXBUF5CR_CFG;
XSPI_AHBRXBUFnCR0(6) = XSPI_AHBRXBUF6CR_CFG;
XSPI_AHBRXBUFnCR0(7) = XSPI_AHBRXBUF7CR_CFG;
/* Configure Flash control registers (FLSHxCR0,FLSHxCR1,FLSHxCR2) */
XSPI_FLSHA1CR0 = XSPI_FLSHA1CR0_CFG;
XSPI_FLSHA2CR0 = XSPI_FLSHA2CR0_CFG;
XSPI_FLSHB1CR0 = XSPI_FLSHB1CR0_CFG;
XSPI_FLSHB2CR0 = XSPI_FLSHB2CR0_CFG;
XSPI_FLSHA1CR1 = XSPI_FLSHA1CR1_CFG;
XSPI_FLSHA2CR1 = XSPI_FLSHA2CR1_CFG;
XSPI_FLSHB1CR1 = XSPI_FLSHB1CR1_CFG;
XSPI_FLSHB2CR1 = XSPI_FLSHB2CR1_CFG;
XSPI_FLSHA1CR2 = XSPI_FLSHA1CR2_CFG;
XSPI_FLSHA2CR2 = XSPI_FLSHA2CR2_CFG;
XSPI_FLSHB1CR2 = XSPI_FLSHB1CR2_CFG;
XSPI_FLSHB2CR2 = XSPI_FLSHB2CR2_CFG;
/* Configure DLL control register (DLLxCR) according to sample clock source selection */
XSPI_DLLACR = XSPI_DLLACR_CFG;
XSPI_DLLBCR = XSPI_DLLBCR_CFG;
}
void xspi_lut_lock(void)
{
XSPI_LUTKEY = LUT_KEY;
XSPI_LUT_LOCK()
}
void xspi_lut_unlock(void)
{
XSPI_LUTKEY = LUT_KEY;
XSPI_LUT_UNLOCK()
}
void hal_flash_init(void)
{
xspi_lut_unlock();
xspi_init();
/* Fast Read */
XSPI_LUT(LUT_INDEX_READ) = XSPI_LUT_SEQ(RADDR_SDR, LUT_PAD_SINGLE, LUT_OP_ADDR3B, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_READ3B);
XSPI_LUT(1) = XSPI_LUT_SEQ(STOP, LUT_PAD_SINGLE, 0x0, READ_SDR, LUT_PAD_SINGLE, 0x04);
XSPI_LUT(2) = 0x0;
XSPI_LUT(3) = 0x0;
/* Write Enable */
XSPI_LUT(LUT_INDEX_WRITE_EN) = XSPI_LUT_SEQ(STOP, LUT_PAD_SINGLE, 0x0, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_WE);
XSPI_LUT(5) = 0x0;
XSPI_LUT(6) = 0x0;
XSPI_LUT(7) = 0x0;
/* Erase */
XSPI_LUT(LUT_INDEX_SE) = XSPI_LUT_SEQ(RADDR_SDR, LUT_PAD_SINGLE, LUT_OP_ADDR3B, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_SE);
XSPI_LUT(9) = 0x0;
XSPI_LUT(10) = 0x0;
XSPI_LUT(11) = 0x0;
/* Subsector 4k Erase */
XSPI_LUT(LUT_INDEX_SSE4K) = XSPI_LUT_SEQ(RADDR_SDR, LUT_PAD_SINGLE, LUT_OP_ADDR3B, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_SE_4K);
XSPI_LUT(13) = 0x0;
XSPI_LUT(14) = 0x0;
XSPI_LUT(15) = 0x0;
/* Page Program */
XSPI_LUT(LUT_INDEX_PP) = XSPI_LUT_SEQ(RADDR_SDR, LUT_PAD_SINGLE, LUT_OP_ADDR3B, CMD_SDR, LUT_PAD(1), LUT_OP_PP);
XSPI_LUT(17) = XSPI_LUT_SEQ(STOP, LUT_PAD_SINGLE, 0x0, WRITE_SDR, LUT_PAD_SINGLE, 0x1);
XSPI_LUT(18) = 0x0;
XSPI_LUT(19) = 0x0;
/* Read Flag Status Regsiter */
XSPI_LUT(LUT_INDEX_RDSR) = XSPI_LUT_SEQ(READ_SDR, LUT_PAD_SINGLE, LUT_OP_1BYTE, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_RDSR);
XSPI_LUT(21) = 0x0;
XSPI_LUT(22) = 0x0;
XSPI_LUT(23) = 0x0;
xspi_lut_lock();
}
/* Called from boot_aarch64_start.S */
void hal_ddr_init(void)
{
#ifdef ENABLE_DDR
uint64_t counter = 0;
DDR_DDRCDR_1 = DDR_DDRCDR_1_VAL;
DDR_SDRAM_CLK_CNTL = DDR_SDRAM_CLK_CNTL_VAL;
/* Setup DDR CS (chip select) bounds */
DDR_CS_BNDS(0) = DDR_CS0_BNDS_VAL;
DDR_CS_BNDS(1) = DDR_CS1_BNDS_VAL;
DDR_CS_BNDS(2) = DDR_CS2_BNDS_VAL;
DDR_CS_BNDS(3) = DDR_CS3_BNDS_VAL;
/* DDR SDRAM timing configuration */
DDR_TIMING_CFG_0 = DDR_TIMING_CFG_0_VAL;
DDR_TIMING_CFG_1 = DDR_TIMING_CFG_1_VAL;
DDR_TIMING_CFG_2 = DDR_TIMING_CFG_2_VAL;
DDR_TIMING_CFG_3 = DDR_TIMING_CFG_3_VAL;
DDR_TIMING_CFG_4 = DDR_TIMING_CFG_4_VAL;
DDR_TIMING_CFG_5 = DDR_TIMING_CFG_5_VAL;
DDR_TIMING_CFG_6 = DDR_TIMING_CFG_6_VAL;
DDR_TIMING_CFG_7 = DDR_TIMING_CFG_7_VAL;
DDR_TIMING_CFG_8 = DDR_TIMING_CFG_8_VAL;
DDR_ZQ_CNTL = DDR_ZQ_CNTL_VAL;
DDR_DQ_MAP_0 = DDR_DQ_MAP_0_VAL;
DDR_DQ_MAP_1 = DDR_DQ_MAP_1_VAL;
DDR_DQ_MAP_2 = DDR_DQ_MAP_2_VAL;
DDR_DQ_MAP_3 = DDR_DQ_MAP_3_VAL;
/* DDR SDRAM mode configuration */
DDR_SDRAM_CFG_3 = DDR_SDRAM_CFG_3_VAL;
DDR_SDRAM_MODE = DDR_SDRAM_MODE_VAL;
DDR_SDRAM_MODE_2 = DDR_SDRAM_MODE_2_VAL;
DDR_SDRAM_MODE_3 = DDR_SDRAM_MODE_3_VAL;
DDR_SDRAM_MODE_4 = DDR_SDRAM_MODE_4_VAL;
DDR_SDRAM_MODE_5 = DDR_SDRAM_MODE_5_VAL;
DDR_SDRAM_MODE_6 = DDR_SDRAM_MODE_6_VAL;
DDR_SDRAM_MODE_7 = DDR_SDRAM_MODE_7_VAL;
DDR_SDRAM_MODE_8 = DDR_SDRAM_MODE_8_VAL;
DDR_SDRAM_MODE_9 = DDR_SDRAM_MODE_9_VAL;
DDR_SDRAM_MODE_10 = DDR_SDRAM_MODE_10_VAL;
DDR_SDRAM_MODE_11 = DDR_SDRAM_MODE_11_VAL;
DDR_SDRAM_MODE_12 = DDR_SDRAM_MODE_12_VAL;
DDR_SDRAM_MODE_13 = DDR_SDRAM_MODE_13_VAL;
DDR_SDRAM_MODE_14 = DDR_SDRAM_MODE_14_VAL;
DDR_SDRAM_MODE_15 = DDR_SDRAM_MODE_15_VAL;
DDR_SDRAM_MODE_16 = DDR_SDRAM_MODE_16_VAL;
DDR_SDRAM_MD_CNTL = DDR_SDRAM_MD_CNTL_VAL;
/* DDR Configuration */
DDR_SDRAM_INTERVAL = DDR_SDRAM_INTERVAL_VAL;
DDR_DATA_INIT = DDR_DATA_INIT_VAL;
DDR_WRLVL_CNTL = DDR_WRLVL_CNTL_VAL;
DDR_WRLVL_CNTL_2 = DDR_WRLVL_CNTL_2_VAL;
DDR_WRLVL_CNTL_3 = DDR_WRLVL_CNTL_3_VAL;
DDR_SR_CNTR = 0;
DDR_SDRAM_RCW_1 = DDR_SDRAM_RCW_1_VAL;
DDR_SDRAM_RCW_2 = DDR_SDRAM_RCW_2_VAL;
DDR_SDRAM_RCW_3 = DDR_SDRAM_RCW_3_VAL;
DDR_SDRAM_RCW_4 = DDR_SDRAM_RCW_4_VAL;
DDR_SDRAM_RCW_5 = DDR_SDRAM_RCW_5_VAL;
DDR_SDRAM_RCW_6 = DDR_SDRAM_RCW_6_VAL;
DDR_DDRCDR_2 = DDR_DDRCDR_2_VAL;
DDR_SDRAM_CFG_2 = DDR_SDRAM_CFG_2_VAL;
DDR_INIT_ADDR = 0;
DDR_INIT_EXT_ADDR = 0;
DDR_ERR_DISABLE = 0;
DDR_ERR_INT_EN = DDR_ERR_INT_EN_VAL;
DDR_DDRDSR_1 = DDR_DDRDSR_1_VAL;
DDR_DDRDSR_2 = DDR_DDRDSR_2_VAL;
DDR_ERR_SBE = DDR_ERR_SBE_VAL;
DDR_CS_CONFIG(0) = DDR_CS0_CONFIG_VAL;
DDR_CS_CONFIG(1) = DDR_CS1_CONFIG_VAL;
DDR_CS_CONFIG(2) = DDR_CS2_CONFIG_VAL;
DDR_CS_CONFIG(3) = DDR_CS3_CONFIG_VAL;
/* Set values, but do not enable the DDR yet */
DDR_SDRAM_CFG = (DDR_SDRAM_CFG_VAL & ~DDR_SDRAM_CFG_MEM_EN);
hal_delay_us(500);
asm volatile("isb");
/* Enable controller */
DDR_SDRAM_CFG &= ~(DDR_SDRAM_CFG_BI);
DDR_SDRAM_CFG |= DDR_SDRAM_CFG_MEM_EN;
asm volatile("isb");
/* Wait for data initialization is complete */
while ((DDR_SDRAM_CFG_2 & DDR_SDRAM_CFG2_D_INIT)) {
counter++;
}
(void)counter;
#endif
}
void xspi_writereg(uint32_t* addr, uint32_t val)
{
*(volatile uint32_t *)(addr) = val;
}
void xspi_write_en(uint32_t addr)
{
XSPI_IPTXFCR = XSPI_IPRCFCR_FLUSH;
XSPI_IPCR0 = addr;
XSPI_IPCR1 = XSPI_ISEQID(LUT_INDEX_WRITE_EN) | 1;
XSPI_IPCMD_START();
while(!(XSPI_INTR & XSPI_IPCMDDONE));
XSPI_INTR |= XSPI_IPCMDDONE;
}
void xspi_read_sr(uint8_t* rxbuf, uint32_t addr, uint32_t len)
{
uint32_t data = 0;
/* Read IP CR regsiter */
uint32_t rxfcr = XSPI_IPRXFCR;
/* Flush RX fifo */
rxfcr = rxfcr | XSPI_IPRCFCR_FLUSH;
XSPI_IPTXFCR = rxfcr;
/* Trigger read SR command */
XSPI_IPCR0 = addr;
XSPI_IPCR1 = XSPI_ISEQID(LUT_INDEX_RDSR) | len;
XSPI_IPCMD_START();
while(!(XSPI_INTR & XSPI_IPCMDDONE));
XSPI_INTR |= XSPI_IPCMDDONE;
data = XSPI_RFD(0);
memcpy(rxbuf, &data, len);
XSPI_IPRXFCR = XSPI_IPRCFCR_FLUSH;
XSPI_INTR = XSPI_IPRXWA;
XSPI_INTR = XSPI_IPCMDDONE;
}
void xspi_sw_reset(void)
{
XSPI_SWRESET();
while (XSPI_MCR0 & XSPI_SW_RESET);
}
void xspi_flash_write(uintptr_t address, const uint8_t *data, uint32_t len)
{
uint32_t size = 0;
uint32_t tx_data = 0;
uint32_t size_wm = 0;
uint32_t loop_cnt = 0;
uint32_t remaining, rem_size = 0;
uint32_t i = 0, j = 0;
while (len) {
size = len > XSPI_IP_BUF_SIZE ? XSPI_IP_BUF_SIZE : len;
XSPI_IPCR0 = address;
loop_cnt = size / XSPI_IP_WM_SIZE;
/* Fill TX fifos */
for (i = 0; i < loop_cnt; i++) {
/* Wait for TX fifo ready */
while (!(XSPI_INTR & XSPI_INTR_IPTXWE_MASK));
for(j = 0; j < XSPI_IP_WM_SIZE; j+=4) {
memcpy(&tx_data, data++, 4);
xspi_writereg((uint32_t*)XSPI_TFD_BASE + j, tx_data);
}
/* Reset fifo */
XSPI_INTR = XSPI_INTR_IPTXWE_MASK;
}
remaining = size % XSPI_IP_WM_SIZE;
/* Write remaining data for non aligned data */
if (remaining) {
/* Wait for fifo Empty */
while(!(XSPI_INTR & XSPI_INTR_IPTXWE_MASK));
for(j = 0; j < remaining; j+=4) {
tx_data = 0;
rem_size = (remaining < 4) ? remaining : 4;
memcpy(&tx_data, data++, rem_size);
xspi_writereg((uint32_t*)XSPI_TFD_BASE + j, tx_data);
}
/* Reset fifo */
XSPI_INTR = XSPI_INTR_IPTXWE_MASK;
}
XSPI_IPCR1 = XSPI_ISEQID(LUT_INDEX_PP) | size;
XSPI_IPCMD_START();
/* Wait command done */
while (!(XSPI_INTR & XSPI_IPCMDDONE))
/* Flush fifo, set done flag */
XSPI_IPTXFCR = XSPI_IPRCFCR_FLUSH;
XSPI_INTR = XSPI_IPCMDDONE;
len -= size;
address += size;
}
}
void xspi_flash_sec_erase(uintptr_t address)
{
XSPI_IPCR0 = address;
XSPI_IPCR1 = XSPI_ISEQID(LUT_INDEX_SE) | FLASH_ERASE_SIZE;
XSPI_IPCMD_START();
while(!(XSPI_INTR & XSPI_IPCMDDONE));
XSPI_INTR &= ~XSPI_IPCMDDONE;
}
void hal_flash_unlock(void)
{
}
void hal_flash_lock(void)
{
}
int hal_flash_write(uintptr_t address, const uint8_t *data, int len)
{
xspi_write_en(address);
xspi_flash_write(address, data, len);
return len;
}
int hal_flash_erase(uintptr_t address, int len)
{
uint32_t num_sectors = 0;
uint32_t i = 0;
uint8_t status[4] = {0, 0, 0, 0};
num_sectors = len / FLASH_ERASE_SIZE;
num_sectors += (len % FLASH_ERASE_SIZE) ? 1 : 0;
for (i = 0; i < num_sectors; i++) {
xspi_write_en(address + i * FLASH_ERASE_SIZE);
xspi_flash_sec_erase(address + i * FLASH_ERASE_SIZE);
while (!(status[0] & FLASH_READY_MSK)) {
xspi_read_sr(status, 0, 1);
}
}
xspi_sw_reset();
return len;
}
#ifdef EXT_FLASH
void ext_flash_lock(void)
{
}
void ext_flash_unlock(void)
{
}
int ext_flash_write(uintptr_t address, const uint8_t *data, int len)
{
xspi_write_en(address);
xspi_flash_write(address, data, len);
return len;
}
int ext_flash_read(uintptr_t address, uint8_t *data, int len)
{
address = (address & MASK_32BIT);
memcpy(data, (void*)address, len);
return len;
}
int ext_flash_erase(uintptr_t address, int len)
{
uint32_t num_sectors = 0;
uint32_t i = 0;
uint8_t status[4] = {0, 0, 0, 0};
num_sectors = len / FLASH_ERASE_SIZE;
num_sectors += (len % FLASH_ERASE_SIZE) ? 1 : 0;
for (i = 0; i < num_sectors; i++) {
xspi_write_en(address + i * FLASH_ERASE_SIZE);
xspi_flash_sec_erase(address + i * FLASH_ERASE_SIZE);
while (!(status[0] & FLASH_READY_MSK)) {
xspi_read_sr(status, 0, 1);
}
}
xspi_sw_reset();
return len;
}
#endif /* EXT_FLASH */
void hal_prepare_boot(void)
{
#if 0
/* TODO: EL2 */
switch_el3_to_el2();
#endif
}
#ifdef TEST_HW_DDR
static int test_hw_ddr(void)
{
int status = 0;
uint64_t counter = 0;
DDR_MTPn(0) = 0xffffffff;
DDR_MTPn(1) = 0x00000001;
DDR_MTPn(2) = 0x00000002;
DDR_MTPn(3) = 0x00000003;
DDR_MTPn(4) = 0x00000004;
DDR_MTPn(5) = 0x00000005;
DDR_MTPn(6) = 0xcccccccc;
DDR_MTPn(7) = 0xbbbbbbbb;
DDR_MTPn(8) = 0xaaaaaaaa;
DDR_MTPn(9) = 0xffffffff;
DDR_MTCR = DDR_MEM_TEST_EN;
while (DDR_MTCR & DDR_MEM_TEST_EN)
counter++;
if (DDR_ERR_SBE & 0xffff || DDR_ERR_DETECT) {
status = -1;
wolfBoot_printf("DDR ECC error\n");
}
if (DDR_MTCR & DDR_MEM_TEST_FAIL) {
status = -1;
wolfBoot_printf("DDR self-test failed\n");
} else {
status = 0;
wolfBoot_printf("DDR self-test passed\n");
}
return status;
}
#endif /* TEST_HW_DDR */
#ifdef TEST_DDR
static int test_ddr(void)
{
int ret = 0;
int i;
uint32_t *ptr = (uint32_t*)(DDR_ADDRESS + TEST_DDR_OFFSET);
uint32_t tmp[TEST_DDR_SIZE/4];
memset(tmp, 0, sizeof(tmp));
/* test write to DDR */
for (i = 0; i < TEST_DDR_SIZE/4; i++) {
ptr[i] = (uint32_t)i;
}
/* test read from DDR */
for (i = 0; i < TEST_DDR_SIZE/4; i++) {
tmp[i] = ptr[i];
}
/* compare results */
for (i = 0; i < TEST_DDR_SIZE/4; i++) {
if (tmp[i] != (uint32_t)i) {
ret = -1;
break;
}
}
return ret;
}
#endif /* TEST_DDR */
#ifdef TEST_EXT_FLASH
#define TEST_ADDRESS 0x20012000
static int test_flash(void)
{
int ret;
uint32_t i;
uint8_t pageData[FLASH_PAGE_SIZE];
/* Erase sector */
ret = ext_flash_erase(TEST_ADDRESS, WOLFBOOT_SECTOR_SIZE);
wolfBoot_printf("Erase Sector: Ret %d\n", ret);
/* Write Pages */
for (i=0; i<sizeof(pageData); i++) {
pageData[i] = (i & 0xff);
}
ret = ext_flash_write(TEST_ADDRESS, pageData, sizeof(pageData));
wolfBoot_printf("Write Page: Ret %d\n", ret);
/* Read page */
memset(pageData, 0, sizeof(pageData));
ret = ext_flash_read(TEST_ADDRESS, pageData, sizeof(pageData));
wolfBoot_printf("Read Page: Ret %d\n", ret);
wolfBoot_printf("Checking...\n");
/* Check data */
for (i=0; i<sizeof(pageData); i++) {
wolfBoot_printf("check[%3d] %02x\n", i, pageData[i]);
if (pageData[i] != (i & 0xff)) {
wolfBoot_printf("Check Data @ %d failed\n", i);
return -i;
}
}
wolfBoot_printf("Flash Test Passed\n");
return ret;
}
#endif /* TEST_EXT_FLASH */
/* Function to set MMU MAIR memory attributes base on index */
void set_memory_attribute(uint32_t attr_idx, uint64_t mair_value)
{
uint64_t mair = 0;
asm volatile("mrs %0, mair_el3" : "=r"(mair));
mair &= ~(0xffUL << (attr_idx * 8));
mair |= (mair_value << (attr_idx * 8));
asm volatile("msr mair_el3, %0" : : "r"(mair));
}
void hal_init_tzpc(void)
{
TZDECPROT0_SET = 0xff; //0x86;
TZDECPROT1_SET = 0xff; //0x00;
TZPCR0SIZE = 0x00; //0x200;
/* Enable TZASC to allow secure read/write access to the DDR */
/* Really, we are allowing the full Region 0 to be R/W in secure world */
TZASC_ACTION = TZASC_ACTION_ENABLE_DECERR;
TZASC_REGION_ATTRIBUTES_0 = TZASC_REGION_ATTRIBUTES_ALLOW_SECRW;
TZASC_GATE_KEEPER = TZASC_GATE_KEEPER_REQUEST_OPEN;
}
void hal_init(void)
{
volatile uint32_t counter=0xFFFFul; /* used for delay */
#ifdef DEBUG_UART
uint32_t fw;
uart_init();
wolfBoot_printf("wolfBoot Init\n");
#endif
hal_init_tzpc();
hal_flash_init();
wolfBoot_printf("Flash init done\n");
#ifdef TEST_EXT_FLASH
test_flash();
#endif
#ifdef TPM_TEST
read_tpm_id();
wolfBoot_printf("TPM test done\n");
#endif
hal_ddr_init();
wolfBoot_printf("DDR init done\n");
#ifdef TEST_HW_DDR
test_hw_ddr();
#endif
while (counter--);
wolfBoot_printf("Delay is done\n");
#if TEST_DDR
if (test_ddr() == -1) {
wolfBoot_printf("DDR R/W test failed\n");
}
else {
wolfBoot_printf("DDR R/W test passed\n");
}
#endif
#if 0
/* TODO: MMU enable? */
mmu_enable();
wolfBoot_printf("MMU init done\n");
#endif
}
#endif /* TARGET_nxp_ls1028a */