Skip to content

Commit

Permalink
feat: Examples (#43)
Browse files Browse the repository at this point in the history
* export content from scheduler

* add binary classification example

* add multiple linear regression example

* lockfile

* fix log(0) and division by 0

* avoid positive log(y)

* prevent division by zero in bincrossentropy

* use proper bincrossentropy

* use log loss instead of MSE

* remove unused imports

* temp-fix: make softmax layer work like other activations

* add multiclass classification

* change method name

* add spam classifier

* add spam classifier task

* change comments

* remove unused imports
  • Loading branch information
retraigo authored Dec 11, 2023
1 parent 1ea74e3 commit 76e9a91
Show file tree
Hide file tree
Showing 16 changed files with 16,308 additions and 16 deletions.
20 changes: 10 additions & 10 deletions crates/core/src/cpu/cost.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
use std::ops::{Div, Mul, Sub};
use std::{
f32::EPSILON,
ops::{Mul, Sub},
};

use ndarray::{s, ArrayD, ArrayViewD};
use ndarray::{ArrayD, ArrayViewD};

use crate::Cost;

Expand Down Expand Up @@ -43,27 +46,24 @@ fn mse_prime<'a>(y_hat: ArrayViewD<'a, f32>, y: ArrayViewD<'a, f32>) -> ArrayD<f

fn cross_entropy<'a>(y_hat: ArrayViewD<'a, f32>, y: ArrayViewD<'a, f32>) -> f32 {
let batches = y_hat.dim()[0];
let mut total = 0.0;
for b in 0..batches {
total -= y_hat.slice(s![b, ..]).mul(&y.slice(s![b, ..])).sum().ln()
}
let total = (-&y_hat * (y.map(|x| x.max(EPSILON).min(1f32 - EPSILON).ln()))).sum();
return total / batches as f32;
}

fn cross_entropy_prime<'a>(y_hat: ArrayViewD<'a, f32>, y: ArrayViewD<'a, f32>) -> ArrayD<f32> {
return -y_hat.div(&y);
return -&y_hat / (&y + EPSILON);
}

fn bin_cross_entropy<'a>(y_hat: ArrayViewD<'a, f32>, y: ArrayViewD<'a, f32>) -> f32 {
return -y_hat
.mul(y.map(|x| x.ln()))
.sub(((1.0).sub(&y_hat)).mul(y.map(|x| 1.0 - x.ln())))
.mul(y.map(|x| x.max(EPSILON).min(1f32 - EPSILON).ln()))
.sub(((1.0).sub(&y_hat)).mul(y.map(|x| 1.0 - x.max(EPSILON).min(1f32 - EPSILON).ln())))
.sum()
/ y.len() as f32;
}

fn bin_cross_entropy_prime<'a>(y_hat: ArrayViewD<'a, f32>, y: ArrayViewD<'a, f32>) -> ArrayD<f32> {
return y.sub(&y_hat).div(y.mul(1.0.sub(&y)));
return (-&y_hat / (&y + EPSILON)) + (1.0 - &y_hat) / (1.0 - &y + EPSILON);
}

fn hinge<'a>(y_hat: ArrayViewD<'a, f32>, y: ArrayViewD<'a, f32>) -> f32 {
Expand Down
3 changes: 2 additions & 1 deletion crates/core/src/cpu/layers/activation.rs
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ impl SoftmaxCPULayer {
}

pub fn forward_propagate(&mut self, inputs: ArrayD<f32>) -> ArrayD<f32> {
self.outputs = inputs.clone();
let batches = self.outputs.dim()[0];
for b in 0..batches {
let exp = inputs.slice(s![b, ..]).map(|x| x.exp());
Expand All @@ -78,7 +79,7 @@ impl SoftmaxCPULayer {
pub fn backward_propagate(&mut self, d_outputs: ArrayD<f32>) -> ArrayD<f32> {
let batches = self.outputs.dim()[0];
let array_size = self.outputs.dim().size() / batches;

let mut d_inputs = ArrayD::zeros(self.outputs.dim());
for b in 0..batches {
for y in 0..array_size {
Expand Down
4 changes: 4 additions & 0 deletions deno.json
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,10 @@
"example:xor-gpu": "deno run -A --unstable ./examples/xor_gpu.ts",
"example:xor-wasm": "deno run -A --unstable ./examples/xor_wasm.ts",
"example:linear": "deno run -A --unstable ./examples/linear.ts",
"example:multiple-linear": "deno run -A --unstable ./examples/multiple-linear/student.ts",
"example:binary": "deno run -A --unstable ./examples/classification/binary_iris.ts",
"example:multiclass": "deno run -A --unstable ./examples/classification/iris.ts",
"example:text": "deno run -A --unstable ./examples/classification/spam.ts",
"example:filters": "deno run -A --unstable examples/filters/conv.ts ",
"example:train": "deno run -A --unstable examples/model/train.ts ",
"example:run": "deno run -A --unstable examples/model/run.ts ",
Expand Down
49 changes: 48 additions & 1 deletion deno.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

3 changes: 3 additions & 0 deletions examples/classification/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# Binary Classification
This example showcases binary classification on the Iris dataset.
The `Iris Virginica` class is omitted for this example.
100 changes: 100 additions & 0 deletions examples/classification/binary_iris.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
5.1,3.5,1.4,.2,"Setosa"
4.9,3,1.4,.2,"Setosa"
4.7,3.2,1.3,.2,"Setosa"
4.6,3.1,1.5,.2,"Setosa"
5,3.6,1.4,.2,"Setosa"
5.4,3.9,1.7,.4,"Setosa"
4.6,3.4,1.4,.3,"Setosa"
5,3.4,1.5,.2,"Setosa"
4.4,2.9,1.4,.2,"Setosa"
4.9,3.1,1.5,.1,"Setosa"
5.4,3.7,1.5,.2,"Setosa"
4.8,3.4,1.6,.2,"Setosa"
4.8,3,1.4,.1,"Setosa"
4.3,3,1.1,.1,"Setosa"
5.8,4,1.2,.2,"Setosa"
5.7,4.4,1.5,.4,"Setosa"
5.4,3.9,1.3,.4,"Setosa"
5.1,3.5,1.4,.3,"Setosa"
5.7,3.8,1.7,.3,"Setosa"
5.1,3.8,1.5,.3,"Setosa"
5.4,3.4,1.7,.2,"Setosa"
5.1,3.7,1.5,.4,"Setosa"
4.6,3.6,1,.2,"Setosa"
5.1,3.3,1.7,.5,"Setosa"
4.8,3.4,1.9,.2,"Setosa"
5,3,1.6,.2,"Setosa"
5,3.4,1.6,.4,"Setosa"
5.2,3.5,1.5,.2,"Setosa"
5.2,3.4,1.4,.2,"Setosa"
4.7,3.2,1.6,.2,"Setosa"
4.8,3.1,1.6,.2,"Setosa"
5.4,3.4,1.5,.4,"Setosa"
5.2,4.1,1.5,.1,"Setosa"
5.5,4.2,1.4,.2,"Setosa"
4.9,3.1,1.5,.2,"Setosa"
5,3.2,1.2,.2,"Setosa"
5.5,3.5,1.3,.2,"Setosa"
4.9,3.6,1.4,.1,"Setosa"
4.4,3,1.3,.2,"Setosa"
5.1,3.4,1.5,.2,"Setosa"
5,3.5,1.3,.3,"Setosa"
4.5,2.3,1.3,.3,"Setosa"
4.4,3.2,1.3,.2,"Setosa"
5,3.5,1.6,.6,"Setosa"
5.1,3.8,1.9,.4,"Setosa"
4.8,3,1.4,.3,"Setosa"
5.1,3.8,1.6,.2,"Setosa"
4.6,3.2,1.4,.2,"Setosa"
5.3,3.7,1.5,.2,"Setosa"
5,3.3,1.4,.2,"Setosa"
7,3.2,4.7,1.4,"Versicolor"
6.4,3.2,4.5,1.5,"Versicolor"
6.9,3.1,4.9,1.5,"Versicolor"
5.5,2.3,4,1.3,"Versicolor"
6.5,2.8,4.6,1.5,"Versicolor"
5.7,2.8,4.5,1.3,"Versicolor"
6.3,3.3,4.7,1.6,"Versicolor"
4.9,2.4,3.3,1,"Versicolor"
6.6,2.9,4.6,1.3,"Versicolor"
5.2,2.7,3.9,1.4,"Versicolor"
5,2,3.5,1,"Versicolor"
5.9,3,4.2,1.5,"Versicolor"
6,2.2,4,1,"Versicolor"
6.1,2.9,4.7,1.4,"Versicolor"
5.6,2.9,3.6,1.3,"Versicolor"
6.7,3.1,4.4,1.4,"Versicolor"
5.6,3,4.5,1.5,"Versicolor"
5.8,2.7,4.1,1,"Versicolor"
6.2,2.2,4.5,1.5,"Versicolor"
5.6,2.5,3.9,1.1,"Versicolor"
5.9,3.2,4.8,1.8,"Versicolor"
6.1,2.8,4,1.3,"Versicolor"
6.3,2.5,4.9,1.5,"Versicolor"
6.1,2.8,4.7,1.2,"Versicolor"
6.4,2.9,4.3,1.3,"Versicolor"
6.6,3,4.4,1.4,"Versicolor"
6.8,2.8,4.8,1.4,"Versicolor"
6.7,3,5,1.7,"Versicolor"
6,2.9,4.5,1.5,"Versicolor"
5.7,2.6,3.5,1,"Versicolor"
5.5,2.4,3.8,1.1,"Versicolor"
5.5,2.4,3.7,1,"Versicolor"
5.8,2.7,3.9,1.2,"Versicolor"
6,2.7,5.1,1.6,"Versicolor"
5.4,3,4.5,1.5,"Versicolor"
6,3.4,4.5,1.6,"Versicolor"
6.7,3.1,4.7,1.5,"Versicolor"
6.3,2.3,4.4,1.3,"Versicolor"
5.6,3,4.1,1.3,"Versicolor"
5.5,2.5,4,1.3,"Versicolor"
5.5,2.6,4.4,1.2,"Versicolor"
6.1,3,4.6,1.4,"Versicolor"
5.8,2.6,4,1.2,"Versicolor"
5,2.3,3.3,1,"Versicolor"
5.6,2.7,4.2,1.3,"Versicolor"
5.7,3,4.2,1.2,"Versicolor"
5.7,2.9,4.2,1.3,"Versicolor"
6.2,2.9,4.3,1.3,"Versicolor"
5.1,2.5,3,1.1,"Versicolor"
5.7,2.8,4.1,1.3,"Versicolor"
89 changes: 89 additions & 0 deletions examples/classification/binary_iris.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import {
Cost,
CPU,
DenseLayer,
Sequential,
setupBackend,
SigmoidLayer,
tensor1D,
tensor2D,
} from "../../mod.ts";

import { parse } from "https://deno.land/[email protected]/csv/parse.ts";

// Import helpers for metrics
import {
ClassificationReport,
// Split the dataset
useSplit,
} from "https://deno.land/x/[email protected]/mod.ts";

// Define classes
const classes = ["Setosa", "Versicolor"];

// Read the training dataset
const _data = Deno.readTextFileSync("examples/classification/binary_iris.csv");
const data = parse(_data);

// Get the predictors (x) and targets (y)
const x = data.map((fl) => fl.slice(0, 4).map(Number));
const y = data.map((fl) => classes.indexOf(fl[4]));

// Split the dataset for training and testing
const [train, test] = useSplit({ ratio: [7, 3], shuffle: true }, x, y) as [
[typeof x, typeof y],
[typeof x, typeof y],
];

// Setup the CPU backend for Netsaur
await setupBackend(CPU);

// Create a sequential neural network
const net = new Sequential({
// Set number of minibatches to 4
// Set size of output to 4
size: [4, 4],

// Disable logging during training
silent: false,

// Define each layer of the network
layers: [
// A dense layer with 4 neurons
DenseLayer({ size: [4] }),
// A sigmoid activation layer
SigmoidLayer(),
// A dense layer with 1 neuron
DenseLayer({ size: [1] }),
// Another sigmoid layer
SigmoidLayer(),
],
// We are using Log Loss for finding cost
cost: Cost.BinCrossEntropy,
});

const time = performance.now();

// Train the network
net.train(
[
{
inputs: tensor2D(train[0]),
outputs: tensor2D(train[1].map((x) => [x])),
},
],
// Train for 150 epochs
150,
1,
// Use a smaller learning rate
0.02
);

console.log(`training time: ${performance.now() - time}ms`);

const res = await Promise.all(
test[0].map((input) => net.predict(tensor1D(input))),
);
const y1 = res.map((x) => x.data[0] < 0.5 ? 0 : 1);
const cMatrix = new ClassificationReport(test[1], y1);
console.log("Confusion Matrix: ", cMatrix);
Loading

0 comments on commit 76e9a91

Please sign in to comment.