Skip to content

delwen/roadoi

 
 

Repository files navigation

roadoi - Use Unpaywall with R

Build Status AppVeyor Build Status codecov.io cran version rstudio mirror downloads review

roadoi interacts with the Unpaywall API, a simple web-interface which links DOIs and open access versions of scholarly works. The API powers Unpaywall.

This client supports the most recent API Version 2.

API Documentation: http://unpaywall.org/products/api

How do I use it?

Use the oadoi_fetch() function in this package to get open access status information and full-text links from Unpaywall.

roadoi::oadoi_fetch(dois = c("10.1038/ng.3260", "10.1093/nar/gkr1047"), 
                    email = "[email protected]")
#> # A tibble: 2 x 18
#>   doi   best_oa_location oa_locations data_standard is_oa genre oa_status
#>   <chr> <list>           <list>               <int> <lgl> <chr> <chr>    
#> 1 10.1… <tibble [1 × 11… <tibble [1 …             2 TRUE  jour… green    
#> 2 10.1… <tibble [1 × 9]> <tibble [6 …             2 TRUE  jour… gold     
#> # … with 11 more variables: has_repository_copy <lgl>,
#> #   journal_is_oa <lgl>, journal_is_in_doaj <lgl>, journal_issns <chr>,
#> #   journal_issn_l <chr>, journal_name <chr>, publisher <chr>,
#> #   title <chr>, year <chr>, updated <chr>, authors <list>

There are no API restrictions. However, providing an email address is required and a rate limit of 100k is suggested. If you need to access more data, use the data dump instead.

RStudio Addin

This package also has a RStudio Addin for easily finding free full-texts in RStudio.

How do I get it?

Install and load from CRAN:

install.packages("roadoi")
library(roadoi)

To install the development version, use the devtools package

devtools::install_github("ropensci/roadoi")
library(roadoi)

Long-Form Documentation including use-case

Open access copies of scholarly publications are sometimes hard to find. Some are published in open access journals. Others are made freely available as preprints before publication, and others are deposited in institutional repositories, digital archives maintained by universities and research institutions. This document guides you to roadoi, a R client that makes it easy to search for these open access copies by interfacing the Unpaywall service where DOIs are matched with freely available full-texts available from open access journals and archives.

About Unpaywall

Unpaywall, developed and maintained by the team of Impactstory, is a non-profit service that finds open access copies of scholarly literature simply by looking up a DOI (Digital Object Identifier). It not only returns open access full-text links, but also helpful metadata about the open access status of a publication such as licensing or provenance information.

Unpaywall uses different data sources to find open access full-texts including:

  • Crossref: a DOI registration agency serving major scholarly publishers.
  • Directory of Open Access Journals (DOAJ): a registry of open access journals
  • Various OAI-PMH metadata sources. OAI-PMH is a protocol often used by open access journals and repositories such as arXiv and PubMed Central.

See Piwowar et al. (2018) for a comprehensive overview of Unpaywall.

Basic usage

There is one major function to talk with Unpaywall, oadoi_fetch(), taking a character vector of DOIs and your email address as required arguments.

library(roadoi)
roadoi::oadoi_fetch(dois = c("10.1186/s12864-016-2566-9",
                             "10.1103/physreve.88.012814"), 
                    email = "[email protected]")
#> # A tibble: 2 x 18
#>   doi   best_oa_location oa_locations data_standard is_oa genre oa_status
#>   <chr> <list>           <list>               <int> <lgl> <chr> <chr>    
#> 1 10.1… <tibble [1 × 9]> <tibble [5 …             2 TRUE  jour… gold     
#> 2 10.1… <tibble [1 × 9]> <tibble [2 …             2 TRUE  jour… hybrid   
#> # … with 11 more variables: has_repository_copy <lgl>,
#> #   journal_is_oa <lgl>, journal_is_in_doaj <lgl>, journal_issns <chr>,
#> #   journal_issn_l <chr>, journal_name <chr>, publisher <chr>,
#> #   title <chr>, year <chr>, updated <chr>, authors <list>

What's returned?

The client supports API version 2. According to the Unpaywall Data Format, the following variables with the following definitions are returned:

Column Description
doi DOI (always in lowercase)
best_oa_location list-column describing the best OA location. Algorithm prioritizes publisher hosted content (e.g. Hybrid or Gold)
oa_locations list-column of all the OA locations.
data_standard Indicates the data collection approaches used for this resource. 1 mostly uses Crossref for hybrid detection. 2 uses more comprehensive hybrid detection methods.
is_oa Is there an OA copy (logical)?
genre Publication type
oa_status Classifies OA resources by location and license terms as one of: gold, hybrid, bronze, green or closed. See here for more information https://support.unpaywall.org/support/solutions/articles/44001777288-what-do-the-types-of-oa-status-green-gold-hybrid-and-bronze-mean-.
has_repository_copy Is a full-text available in a repository?
journal_is_oa Is the article published in a fully OA journal? Uses the Directory of Open Access Journals (DOAJ) as source.
journal_is_in_doaj Is the journal listed in the Directory of Open Access Journals (DOAJ).
journal_issns ISSNs, i.e. unique code to identify journals.
journal_issns_l Linking ISSN.
journal_name Journal title
publisher Publisher
title Publication title.
year Year published.
published_date Date published.
updated Time when the data for this resource was last updated.
authors Lists authors (if available)

The columns best_oa_location and oa_locations are list-columns that contain useful metadata about the OA sources found by Unpaywall These are

Column Description
evidence How the OA location was found and is characterized by Unpaywall?
host_type OA full-text provided by publisher or repository.
license The license under which this copy is published
url The URL where you can find this OA copy.
versions The content version accessible at this location following the DRIVER 2.0 Guidelines (https://wiki.surfnet.nl/display/DRIVERguidelines/DRIVER-VERSION+Mappings)

Note that Unpaywall schema is only informally described. Check also with https://unpaywall.org/data-format.

There at least two ways to simplify these list-columns.

To get the full-text links from the list-column best_oa_location, you may want to use purrr::map_chr().

library(dplyr)
roadoi::oadoi_fetch(dois = c("10.1186/s12864-016-2566-9",
                             "10.1103/physreve.88.012814"), 
                    email = "[email protected]") %>%
  dplyr::mutate(
    urls = purrr::map(best_oa_location, "url") %>% 
                  purrr::map_if(purrr::is_empty, ~ NA_character_) %>% 
                  purrr::flatten_chr()
                ) %>%
  .$urls
#> [1] "https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-016-2566-9"
#> [2] "https://link.aps.org/accepted/10.1103/PhysRevE.88.012814"

If you want to gather all full-text links and to explore where these links are hosted, simplify the list-column oa_locations with tidyr::unnest(). Note the column updated, which belongs to the main data.frame and the nested list-column. It will cause an error when flatting into regular columns. Either de-select updated or change the argument names_repair.

library(dplyr)
library(tidyr)
roadoi::oadoi_fetch(dois = c("10.1186/s12864-016-2566-9",
                             "10.1103/physreve.88.012814"), 
                    email = "[email protected]") %>%
  tidyr::unnest(oa_locations, names_repair = "universal") %>% 
  dplyr::mutate(
    hostname = purrr::map(url, httr::parse_url) %>% 
                  purrr::map_chr(., "hostname", .null = NA_integer_)
                ) %>% 
  dplyr::mutate(hostname = gsub("www.", "", hostname)) %>%
  dplyr::group_by(hostname) %>%
  dplyr::summarize(hosts = n())
#> # A tibble: 7 x 2
#>   hostname                      hosts
#>   <chr>                         <int>
#> 1 arxiv.org                         1
#> 2 bmcgenomics.biomedcentral.com     1
#> 3 doi.org                           1
#> 4 europepmc.org                     1
#> 5 link.aps.org                      1
#> 6 ncbi.nlm.nih.gov                  1
#> 7 pub.uni-bielefeld.de              1

Note that fields to be returned might change according to the Unpaywall API specs

Any API restrictions?

There are no API restrictions. However, Unpaywall requires an email address when using its API. If you are too tired to type in your email address every time, you can store the email in the .Renviron file with the option roadoi_email

roadoi_email = "[email protected]"
```.

You can open your `.Renviron` file calling 

```r
file.edit("~/.Renviron")`

Save the file and restart your R session. To stop sharing the email when using roadoi, delete it from your .Renviron file.

Keeping track of crawling

To follow your API call, and to estimate the time until completion, use the .progress parameter inherited from plyr to display a progress bar.

roadoi::oadoi_fetch(dois = c("10.1186/s12864-016-2566-9",
                             "10.1103/physreve.88.012814"), 
                    email = "[email protected]", 
                    .progress = "text")
#> 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |================================                                 |  50%
  |                                                                       
  |=================================================================| 100%
#> # A tibble: 2 x 18
#>   doi   best_oa_location oa_locations data_standard is_oa genre oa_status
#>   <chr> <list>           <list>               <int> <lgl> <chr> <chr>    
#> 1 10.1… <tibble [1 × 9]> <tibble [5 …             2 TRUE  jour… gold     
#> 2 10.1… <tibble [1 × 9]> <tibble [2 …             2 TRUE  jour… hybrid   
#> # … with 11 more variables: has_repository_copy <lgl>,
#> #   journal_is_oa <lgl>, journal_is_in_doaj <lgl>, journal_issns <chr>,
#> #   journal_issn_l <chr>, journal_name <chr>, publisher <chr>,
#> #   title <chr>, year <chr>, updated <chr>, authors <list>

Catching errors

Unpaywall is a reliable API. However, this client follows Hadley Wickham's Best practices for writing an API package and throws an error when the API does not return valid JSON or is not available. To catch these errors, you may want to use purrr's safely() function

random_dois <-  c("ldld", "10.1038/ng.3260", "§dldl  ")
my_data <- purrr::map(random_dois, 
              .f = purrr::safely(function(x) roadoi::oadoi_fetch(x, email = "[email protected]")))
# return results as data.frame
purrr::map_df(my_data, "result")
#> # A tibble: 1 x 18
#>   doi   best_oa_location oa_locations data_standard is_oa genre oa_status
#>   <chr> <list>           <list>               <int> <lgl> <chr> <chr>    
#> 1 10.1… <tibble [1 × 11… <tibble [1 …             2 TRUE  jour… green    
#> # … with 11 more variables: has_repository_copy <lgl>,
#> #   journal_is_oa <lgl>, journal_is_in_doaj <lgl>, journal_issns <chr>,
#> #   journal_issn_l <chr>, journal_name <chr>, publisher <chr>,
#> #   title <chr>, year <chr>, updated <chr>, authors <list>
#show errors
purrr::map(my_data, "error")
#> [[1]]
#> <simpleError: Unpaywall request failed [404]
#> 'ldld' is an invalid doi. See https://doi.org/ldld>
#> 
#> [[2]]
#> NULL
#> 
#> [[3]]
#> <simpleError: Unpaywall request failed [404]
#> '§dldl' is an invalid doi. See https://doi.org/§dldl>

Use Case: Studying the compliance with open access policies

An increasing number of universities, research organisations and funders have launched open access policies in recent years. Using roadoi together with other R-packages makes it easy to examine how and to what extent researchers comply with these policies in a reproducible and transparent manner. In particular, the rcrossref package, maintained by rOpenSci, provides many helpful functions for this task.

Gathering DOIs representing scholarly publications

DOIs have become essential for referencing scholarly publications, and thus many digital libraries and institutional databases keep track of these persistent identifiers. For the sake of this vignette, instead of starting with a pre-defined set of publications originating from these sources, we simply generate a random sample of 50 DOIs registered with Crossref by using the rcrossref package.

library(dplyr)
library(rcrossref)
# get a random sample of DOIs and metadata describing these works
random_dois <- rcrossref::cr_r(sample = 50)

Calling Unpaywall

Now let's call Unpaywall. We are capturing possible errors.

oa_df <- purrr::map(random_dois, .f = purrr::safely(
  function(x) roadoi::oadoi_fetch(x, email = "[email protected]")
  )) %>%
  purrr::map_df("result")

Reporting

After obtaining the data, reporting with R is straightforward. You can even generate dynamic reports using R Markdown and related packages, thus making your study reproducible and transparent.

To display how many full-text links were found and which sources were used in a nicely formatted markdown-table using the knitr-package:

if(!is.null(oa_df))
oa_df %>%
  group_by(is_oa) %>%
  summarise(Articles = n()) %>%
  mutate(Proportion = Articles / sum(Articles)) %>%
  arrange(desc(Articles)) %>%
  knitr::kable()
is_oa Articles Proportion
FALSE 33 0.66
TRUE 17 0.34

How did Unpaywall find those Open Access full-texts, which were characterized as best matches, and how are these OA types distributed over publication types?

if(!is.null(oa_df))
oa_df %>%
  filter(is_oa == TRUE) %>%
  select(best_oa_location, genre) %>%
  tidyr::unnest(best_oa_location) %>% 
  group_by(evidence, genre) %>%
  summarise(Articles = n()) %>%
  arrange(desc(Articles)) %>%
  knitr::kable()
evidence genre Articles
open (via free pdf) journal-article 7
open (via page says license) journal-article 6
oa repository (via OAI-PMH doi match) journal-article 1
oa repository (via OAI-PMH title and first author match) journal-article 1
open (via free pdf) book-chapter 1
open (via page says license) proceedings-article 1

More examples

For more examples, see Piwowar et al. 2018. Together with the article, the authors shared their analysis of Unpaywall Data as R Markdown supplement.

This blog post describes how to analyze the Unpaywall data dump with R: https://subugoe.github.io/scholcomm_analytics/posts/unpaywall_evidence/

References

Piwowar, H., Priem, J., Larivière, V., Alperin, J. P., Matthias, L., Norlander, B., … Haustein, S. (2018). The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles. PeerJ, 6, e4375. https://doi.org/10.7717/peerj.4375

Meta

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

License: MIT

Please use the issue tracker for bug reporting and feature requests.

ropensci_footer

Packages

No packages published

Languages

  • R 100.0%