Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/1000 #151

Merged
merged 6 commits into from
Jul 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
937 changes: 925 additions & 12 deletions notebooks/load_CNN_chk.ipynb

Large diffs are not rendered by default.

19 changes: 14 additions & 5 deletions src/scripts/Aleatoric.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,13 @@ def parse_args():
default=DefaultsAnalysis["analysis"]["model_names_list"],
help="Beginning of name for saved checkpoints and figures",
)
parser.add_argument(
"--inject_type_list",
type=list,
required=False,
default=DefaultsAnalysis["analysis"]["inject_type_list"],
help="Feature and predictive",
)
parser.add_argument(
"--n_epochs",
type=int,
Expand Down Expand Up @@ -133,13 +140,15 @@ def parse_args():
"n_models": args.n_models,
"n_epochs": args.n_epochs,
"data_prescription": args.data_prescription,
"data_dimension": args.data_dimension,
"BETA": args.BETA,
"COEFF": args.COEFF,
"loss_type": args.loss_type,
},
"analysis": {
"noise_level_list": args.noise_level_list,
"model_names_list": args.model_names_list,
"inject_type_list": args.inject_type_list,
"plot": args.plot,
"savefig": args.savefig,
"verbose": args.verbose,
Expand Down Expand Up @@ -185,9 +194,6 @@ def beta_type(value):
"analysis", "inject_type_list", "Analysis"
)
dim = config.get_item("model", "data_dimension", "Analysis")
sigma_list = []
for noise in noise_list:
sigma_list.append(DataPreparation.get_sigma(noise))
root_dir = config.get_item("common", "dir", "Analysis")
path_to_chk = root_dir + "checkpoints/"
path_to_out = root_dir + "analysis/"
Expand Down Expand Up @@ -302,13 +308,16 @@ def beta_type(value):
alpha=0.25,
edgecolor=None,
)
sigma = DataPreparation.get_sigma(
noise, inject_type=typei, data_dimension=dim
)
ax.plot(
range(n_epochs),
al,
color=color_list[i],
label=r"$\sigma = $" + str(sigma_list[i]),
label=r"$\sigma = $" + str(sigma),
)
ax.axhline(y=sigma_list[i], color=color_list[i], ls="--")
ax.axhline(y=sigma, color=color_list[i], ls="--")
ax.set_ylabel("Aleatoric Uncertainty")
ax.set_xlabel("Epoch")
# if model[0:3] == "DER":
Expand Down
16 changes: 13 additions & 3 deletions src/scripts/DeepEnsemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,6 +215,12 @@ def parse_args():
default=DefaultsDE["model"]["n_hidden"],
help="Number of hidden neurons in the hidden layer, default 64",
)
parser.add_argument(
"--save_data_size",
action="store_true",
default=DefaultsDE["model"]["save_data_size"],
help="save chk with the number of examples in the dataset",
)
parser.add_argument(
"--verbose",
action="store_true",
Expand Down Expand Up @@ -264,6 +270,7 @@ def parse_args():
"rs_list": args.rs_list,
"save_n_hidden": args.save_n_hidden,
"n_hidden": args.n_hidden,
"save_data_size": args.save_data_size,
"verbose": args.verbose,
},
"data": {
Expand Down Expand Up @@ -309,6 +316,7 @@ def beta_type(value):

if __name__ == "__main__":
config = parse_args()
verbose = config.get_item("model", "verbose", "DE")
size_df = int(config.get_item("data", "size_df", "DE"))
noise = config.get_item("data", "noise_level", "DE")
norm = config.get_item("data", "normalize", "DE", raise_exception=False)
Expand Down Expand Up @@ -385,7 +393,7 @@ def beta_type(value):
model_inputs = np.array([xs_array, ms_array, bs_array]).T
plot_value = config.get_item("model", "plot", "DE")
print(f"Value: {plot_value}, Type: {type(plot_value)}")
if plot_value:
if verbose:
# briefly plot what some of the data looks like
if dim == "0D":
print(np.shape(xs_array), np.shape(model_outputs))
Expand All @@ -408,7 +416,7 @@ def beta_type(value):
model_inputs, model_outputs, norm_params = DataPreparation.normalize(
model_inputs, model_outputs, norm
)
if plot_value:
if verbose:
if dim == "2D":
plt.clf()
plt.imshow(model_inputs[0])
Expand Down Expand Up @@ -484,5 +492,7 @@ def beta_type(value):
rs_list=config.get_item("model", "rs_list", "DE"),
save_n_hidden=config.get_item("model", "save_n_hidden", "DE"),
n_hidden=config.get_item("model", "n_hidden", "DE"),
verbose=config.get_item("model", "verbose", "DE"),
save_size_df=config.get_item("model", "save_data_size", "DE"),
size_df=size_df,
verbose=verbose,
)
12 changes: 11 additions & 1 deletion src/scripts/DeepEvidentialRegression.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,6 +204,12 @@ def parse_args():
default=DefaultsDER["model"]["n_hidden"],
help="Number of hidden neurons in the hidden layer, default 64",
)
parser.add_argument(
"--save_data_size",
action="store_true",
default=DefaultsDER["model"]["save_data_size"],
help="save chk with the number of examples in the dataset",
)
parser.add_argument(
"--verbose",
action="store_true",
Expand Down Expand Up @@ -250,6 +256,7 @@ def parse_args():
"rs": args.rs,
"save_n_hidden": args.save_n_hidden,
"n_hidden": args.n_hidden,
"save_data_size": args.save_data_size,
"verbose": args.verbose,
},
"data": {
Expand Down Expand Up @@ -400,7 +407,8 @@ def parse_args():
x_train, x_val, y_train, y_val = DataPreparation.train_val_split(
model_inputs, model_outputs, val_proportion=val_prop, random_state=rs
)
trainData = TensorDataset(torch.Tensor(x_train), torch.Tensor(y_train))
trainData = TensorDataset(
torch.Tensor(x_train), torch.Tensor(y_train))
trainDataLoader = DataLoader(
trainData, batch_size=BATCH_SIZE, shuffle=True
)
Expand Down Expand Up @@ -448,5 +456,7 @@ def parse_args():
rs=config.get_item("model", "rs", "DER"),
save_n_hidden=config.get_item("model", "save_n_hidden", "DER"),
n_hidden=config.get_item("model", "n_hidden", "DER"),
save_size_df=config.get_item("model", "save_data_size", "DER"),
size_df=size_df,
verbose=config.get_item("model", "verbose", "DER"),
)
Loading
Loading