-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
40b4d0c
commit 61d50e8
Showing
1 changed file
with
133 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,137 @@ | ||
# Contains modules used to prepare a dataset | ||
# with varying noise properties | ||
|
||
import pandas as pd | ||
import numpy as np | ||
|
||
|
||
class DatasetPreparation: | ||
""" | ||
A class for loading, preprocessing, and simulating datasets. | ||
Parameters: | ||
- file_path (str): The path to the dataset file. | ||
Methods: | ||
- load_data(): Load data from the specified file path. | ||
- preprocess_data(): Preprocess the loaded data. | ||
- simulate_data(simulation_name, num_samples=1000): Simulate data based on the specified simulation. | ||
- save_data(output_file='output_data.csv'): Save the current dataset to a CSV file. | ||
- get_data(): Retrieve the current dataset. | ||
Example Usage: | ||
``` | ||
dataset_manager = DatasetPreparation('your_dataset.csv') | ||
dataset_manager.load_data() | ||
dataset_manager.preprocess_data() | ||
dataset_manager.simulate_data('linear') | ||
dataset_manager.save_data('simulated_data.csv') | ||
simulated_data = dataset_manager.get_data() | ||
``` | ||
Note: Replace 'your_dataset.csv' with the actual dataset file path. | ||
""" | ||
def __init__(self, file_path): | ||
self.file_path = file_path | ||
self.data = None | ||
|
||
def load_data(self): | ||
try: | ||
self.data = pd.read_csv(self.file_path) | ||
print("Data loaded successfully.") | ||
except FileNotFoundError: | ||
print(f"Error: File not found at {self.file_path}") | ||
|
||
def preprocess_data(self): | ||
if self.data is not None: | ||
# Example: Dropping missing values for simplicity | ||
self.data = self.data.dropna() | ||
print("Data preprocessed successfully.") | ||
else: | ||
print("Error: No data loaded. Please use load_data() first.") | ||
|
||
def simulate_data(self, x, parameters, simulation_name): | ||
if simulation_name == 'linear': | ||
# Example linear simulation | ||
m, b, sigma = parameters | ||
#x = np.linspace(0, 100, 101) | ||
rs = np.random.RandomState()#2147483648)# | ||
ε = rs.normal(loc=0, scale=sigma, size = len(x)) | ||
y = m * x + b + ε | ||
#x = np.linspace(0, 10, num_samples) | ||
#y = 2 * x + 1 + np.random.normal(0, 1, num_samples) | ||
simulated_data = pd.DataFrame({'Feature': x, 'Target': y}) | ||
print("Linear simulation data generated.") | ||
elif simulation_name == 'quadratic': | ||
# Example quadratic simulation | ||
x = np.linspace(0, 10, num_samples) | ||
y = 3 * x**2 + 2 * x + 1 + np.random.normal(0, 1, num_samples) | ||
simulated_data = pd.DataFrame({'Feature': x, 'Target': y}) | ||
print("Quadratic simulation data generated.") | ||
else: | ||
print(f"Error: Unknown simulation name '{simulation_name}'. No data generated.") | ||
return | ||
|
||
self.data = simulated_data | ||
|
||
def save_data(self, output_file='output_data.csv'): | ||
if self.data is not None: | ||
self.data.to_csv(output_file, index=False) | ||
print(f"Data saved to {output_file} successfully.") | ||
else: | ||
print("Error: No data available to save. Please load, preprocess, or simulate data first.") | ||
|
||
def get_data(self): | ||
return self.data | ||
|
||
|
||
class ParameterSampler: | ||
""" | ||
A class for randomly generating and saving parameter values. | ||
Methods: | ||
- random_parameters(num_samples=5): Generate random parameter values. | ||
- save_parameters(output_file='parameter_values.csv'): Save generated parameter values to a CSV file. | ||
Example Usage: | ||
``` | ||
param_sampler = ParameterSampler() | ||
param_sampler.random_parameters(num_samples=10) | ||
param_sampler.save_parameters('random_parameters.csv') | ||
``` | ||
Note: Adjust the parameter generation logic in the `random_parameters` method based on specific requirements. | ||
""" | ||
def __init__(self): | ||
self.parameter_values = None | ||
|
||
def random_parameters(self, num_samples=1): | ||
# Example: Randomly generate parameter values | ||
parameter_values = { | ||
'param1': np.random.uniform(0, 1, num_samples), | ||
'param2': np.random.normal(0, 1, num_samples), | ||
'param3': np.random.choice(['A', 'B', 'C'], size=num_samples) | ||
} | ||
self.parameter_values = pd.DataFrame(parameter_values) | ||
print(f"Random parameter values generated for {num_samples} samples.") | ||
|
||
def save_parameters(self, output_file='parameter_values.csv'): | ||
if self.parameter_values is not None: | ||
self.parameter_values.to_csv(output_file, index=False) | ||
print(f"Parameter values saved to {output_file} successfully.") | ||
else: | ||
print("Error: No parameter values available to save. Please generate random parameters first.") | ||
|
||
# Example usage: | ||
if __name__ == "__main__": | ||
# Replace 'your_dataset.csv' with your actual dataset file path | ||
dataset_manager = DatasetPreparation('your_dataset.csv') | ||
dataset_manager.load_data() | ||
dataset_manager.preprocess_data() | ||
|
||
# Simulate linear data | ||
dataset_manager.simulate_data('linear') | ||
|
||
# Access the simulated data | ||
simulated_data = dataset_manager.get_data() | ||
print(simulated_data.head()) |