Skip to content

Commit

Permalink
removing wd from defaults
Browse files Browse the repository at this point in the history
  • Loading branch information
beckynevin committed Apr 22, 2024
1 parent ac267af commit 3008979
Show file tree
Hide file tree
Showing 2 changed files with 17 additions and 8 deletions.
23 changes: 17 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,22 +12,33 @@ DeepUQ is a package for injecting and measuring different types of uncertainty i
![GitHub Workflow Status](https://img.shields.io/github/workflow/status/owner/repo/test-repo?label=test)

## Workflow
![Folder structure overview](images/folders_deepUQ.png)
![Folder structure overview](images/DeepUQWorkflow_Maggie.png)

Getting a little more specific:
The scripts can be accessed via the ipython example notebooks or via the model modules (ie `DeepEnsemble.py`). For example, to ingest data and train a Deep Ensemble:
> cd src/scripts/
![python module overview](images/workflow_deepUQ.png)
> python DeepEnsemble.py
These modules can be accessed via the ipython example notebooks or via the model modules (ie `DeepEnsemble.py`). For example, to ingest data and train a Deep Ensemble:
> cd src/scripts/
With no config file specified, this command will pull settings from the `default.py` file within `utils`. For the `DeepEnsemble.py` script, it will automatically select the `DefaultsDE` dictionary.

Another option is to specify your own config file:

> python DeepEnsemble.py --config "path/to/config/myconfig.yaml"
> python DeepEnsemble.py low 10 /Users/rnevin/Documents/DeepUQ/ --save_final_checkpoint --savefig --n_epochs=10
Where you would modify the "path/to/config/myconfig.yaml" to specify where your own yaml lives.

The third option is to input settings on the command line. These choices are then combined with the default settings and output in a temporary yaml.

> python DeepEnsemble.py --noise_level "low" --n_models 10 --out_dir ./DeepUQResources/results/--save_final_checkpoint True --savefig True --n_epochs 10
This command will train a 10 network, 10 epoch ensemble on the low noise data and will save figures and final checkpoints to the specified directory. Required arguments are the noise setting (low/medium/high), the number of ensembles, and the working directory.

For more information on the arguments:
> python DeepEnsemble.py --help
The other available script is the `DeepEvidentialRegression.py` script:
> python DeepEvidentialRegression.py --help
## Installation

### Clone this repo
Expand Down
2 changes: 0 additions & 2 deletions src/utils/defaults.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
"loss_type": "bnll_loss",
"n_models": 100,
"init_lr": 0.001,
"wd": "./",
"BETA": 0.5,
"n_epochs": 100,
"save_all_checkpoints": False,
Expand Down Expand Up @@ -77,7 +76,6 @@
"model_type": "DER",
"loss_type": "SDER",
"init_lr": 0.001,
"wd": "./",
"COEFF": 0.5,
"n_epochs": 100,
"save_all_checkpoints": False,
Expand Down

0 comments on commit 3008979

Please sign in to comment.