-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Add
DocumentMeanAveragePrecision
(#7461)
* Add DocumentMeanAveragePrecision * Remove questions input * Update docstrings * Update haystack/components/evaluators/document_map.py Co-authored-by: Madeesh Kannan <[email protected]> --------- Co-authored-by: Madeesh Kannan <[email protected]>
- Loading branch information
1 parent
dc87f51
commit 7799909
Showing
3 changed files
with
166 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
from typing import Any, Dict, List | ||
|
||
from haystack import Document, component | ||
|
||
|
||
@component | ||
class DocumentMeanAveragePrecision: | ||
""" | ||
Evaluator that calculates the mean average precision of the retrieved documents, a metric | ||
that measures how high retrieved documents are ranked. | ||
Each question can have multiple ground truth documents and multiple retrieved documents. | ||
`DocumentMeanAveragePrecision` doesn't normalize its inputs, the `DocumentCleaner` component | ||
should be used to clean and normalize the documents before passing them to this evaluator. | ||
Usage example: | ||
```python | ||
from haystack.components.evaluators import AnswerExactMatchEvaluator | ||
evaluator = DocumentMeanAveragePrecision() | ||
result = evaluator.run( | ||
ground_truth_documents=[ | ||
[Document(content="France")], | ||
[Document(content="9th century"), Document(content="9th")], | ||
], | ||
retrieved_documents=[ | ||
[Document(content="France")], | ||
[Document(content="9th century"), Document(content="10th century"), Document(content="9th")], | ||
], | ||
) | ||
print(result["individual_scores"]) | ||
# [1.0, 0.8333333333333333] | ||
print(result["score"]) | ||
# 0.9166666666666666 | ||
``` | ||
""" | ||
|
||
@component.output_types(score=float, individual_scores=List[float]) | ||
def run( | ||
self, ground_truth_documents: List[List[Document]], retrieved_documents: List[List[Document]] | ||
) -> Dict[str, Any]: | ||
""" | ||
Run the DocumentMeanAveragePrecision on the given inputs. | ||
All lists must have the same length. | ||
:param ground_truth_documents: | ||
A list of expected documents for each question. | ||
:param retrieved_documents: | ||
A list of retrieved documents for each question. | ||
:returns: | ||
A dictionary with the following outputs: | ||
- `score` - The average of calculated scores. | ||
- `invididual_scores` - A list of numbers from 0.0 to 1.0 that represents how high retrieved documents are ranked. | ||
""" | ||
if len(ground_truth_documents) != len(retrieved_documents): | ||
msg = "The length of ground_truth_documents and retrieved_documents must be the same." | ||
raise ValueError(msg) | ||
|
||
individual_scores = [] | ||
|
||
for ground_truth, retrieved in zip(ground_truth_documents, retrieved_documents): | ||
score = 0.0 | ||
for ground_document in ground_truth: | ||
if ground_document.content is None: | ||
continue | ||
|
||
average_precision = 0.0 | ||
relevant_documents = 0 | ||
|
||
for rank, retrieved_document in enumerate(retrieved): | ||
if retrieved_document.content is None: | ||
continue | ||
|
||
if ground_document.content in retrieved_document.content: | ||
relevant_documents += 1 | ||
average_precision += relevant_documents / (rank + 1) | ||
if relevant_documents > 0: | ||
score = average_precision / relevant_documents | ||
individual_scores.append(score) | ||
|
||
score = sum(individual_scores) / len(retrieved_documents) | ||
|
||
return {"score": score, "individual_scores": individual_scores} |
4 changes: 4 additions & 0 deletions
4
releasenotes/notes/document-map-evaluator-de896c94b54fe3fa.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
--- | ||
features: | ||
- | | ||
Add DocumentMeanAveragePrecision, it can be used to calculate mean average precision of retrieved documents. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import pytest | ||
|
||
from haystack import Document | ||
from haystack.components.evaluators.document_map import DocumentMeanAveragePrecision | ||
|
||
|
||
def test_run_with_all_matching(): | ||
evaluator = DocumentMeanAveragePrecision() | ||
result = evaluator.run( | ||
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]], | ||
retrieved_documents=[[Document(content="Berlin")], [Document(content="Paris")]], | ||
) | ||
|
||
assert result == {"individual_scores": [1.0, 1.0], "score": 1.0} | ||
|
||
|
||
def test_run_with_no_matching(): | ||
evaluator = DocumentMeanAveragePrecision() | ||
result = evaluator.run( | ||
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]], | ||
retrieved_documents=[[Document(content="Paris")], [Document(content="London")]], | ||
) | ||
|
||
assert result == {"individual_scores": [0.0, 0.0], "score": 0.0} | ||
|
||
|
||
def test_run_with_partial_matching(): | ||
evaluator = DocumentMeanAveragePrecision() | ||
result = evaluator.run( | ||
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]], | ||
retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]], | ||
) | ||
|
||
assert result == {"individual_scores": [1.0, 0.0], "score": 0.5} | ||
|
||
|
||
def test_run_with_complex_data(): | ||
evaluator = DocumentMeanAveragePrecision() | ||
result = evaluator.run( | ||
ground_truth_documents=[ | ||
[Document(content="France")], | ||
[Document(content="9th century"), Document(content="9th")], | ||
[Document(content="classical music"), Document(content="classical")], | ||
[Document(content="11th century"), Document(content="the 11th")], | ||
[Document(content="Denmark, Iceland and Norway")], | ||
[Document(content="10th century"), Document(content="10th")], | ||
], | ||
retrieved_documents=[ | ||
[Document(content="France")], | ||
[Document(content="9th century"), Document(content="10th century"), Document(content="9th")], | ||
[Document(content="classical"), Document(content="rock music"), Document(content="dubstep")], | ||
[Document(content="11th"), Document(content="the 11th"), Document(content="11th century")], | ||
[Document(content="Denmark"), Document(content="Norway"), Document(content="Iceland")], | ||
[ | ||
Document(content="10th century"), | ||
Document(content="the first half of the 10th century"), | ||
Document(content="10th"), | ||
Document(content="10th"), | ||
], | ||
], | ||
) | ||
assert result == {"individual_scores": [1.0, 0.8333333333333333, 1.0, 0.5, 0.0, 1.0], "score": 0.7222222222222222} | ||
|
||
|
||
def test_run_with_different_lengths(): | ||
with pytest.raises(ValueError): | ||
evaluator = DocumentMeanAveragePrecision() | ||
evaluator.run( | ||
ground_truth_documents=[[Document(content="Berlin")]], | ||
retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]], | ||
) | ||
|
||
with pytest.raises(ValueError): | ||
evaluator = DocumentMeanAveragePrecision() | ||
evaluator.run( | ||
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]], | ||
retrieved_documents=[[Document(content="Berlin")]], | ||
) |