Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: Update uptrain-haystack docstrings #530

Merged
merged 1 commit into from
Mar 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,33 @@
@component
class UpTrainEvaluator:
"""
A component that uses the UpTrain framework to evaluate inputs against a specific metric.

The supported metrics are defined by :class:`UpTrainMetric`. The inputs of the component
metric-dependent. The output is a nested list of evaluation results where each inner list
contains the results for a single input.
A component that uses the [UpTrain framework](https://docs.uptrain.ai/getting-started/introduction)
to evaluate inputs against a specific metric. Supported metrics are defined by `UpTrainMetric`.

Usage example:
```python
from haystack_integrations.components.evaluators.uptrain import UpTrainEvaluator, UpTrainMetric
from haystack.utils import Secret

evaluator = UpTrainEvaluator(
metric=UpTrainMetric.FACTUAL_ACCURACY,
api="openai",
api_key=Secret.from_env_var("OPENAI_API_KEY"),
)
output = evaluator.run(
questions=["Which is the most popular global sport?"],
contexts=[
[
"Football is undoubtedly the world's most popular sport with"
"major events like the FIFA World Cup and sports personalities"
"like Ronaldo and Messi, drawing a followership of more than 4"
"billion people."
]
],
responses=["Football is the most popular sport with around 4 billion" "followers worldwide"],
)
print(output["results"])
```
"""

_backend_metric: Union[Evals, ParametricEval]
Expand All @@ -44,15 +66,15 @@ def __init__(
The metric to use for evaluation.
:param metric_params:
Parameters to pass to the metric's constructor.
Refer to the `UpTrainMetric` class for more details
on required parameters.
:param api:
The API to use for evaluation.

Supported APIs: "openai", "uptrain".
The API to use for evaluation. Supported APIs:
`openai`, `uptrain`.
:param api_key:
The API key to use.
:param api_params:
Additional parameters to pass to the API client.

Required parameters for the UpTrain API: `project_name`.
"""
self.metric = metric if isinstance(metric, UpTrainMetric) else UpTrainMetric.from_str(metric)
Expand All @@ -69,38 +91,20 @@ def __init__(
@component.output_types(results=List[List[Dict[str, Any]]])
def run(self, **inputs) -> Dict[str, Any]:
"""
Run the UpTrain evaluator.

Example:
```python
pipeline = Pipeline()
evaluator = UpTrainEvaluator(
metric=UpTrainMetric.FACTUAL_ACCURACY,
api="openai",
api_key=Secret.from_env_var("OPENAI_API_KEY"),
)
pipeline.add_component("evaluator", evaluator)

# Each metric expects a specific set of parameters as input. Refer to the
# UpTrainMetric class' documentation for more details.
output = pipeline.run({"evaluator": {
"questions": ["question],
"contexts": [["context", "another context"]],
"responses": ["response"]
}})
```
Run the UpTrain evaluator on the provided inputs.

:param inputs:
The inputs to evaluate. These are determined by the
metric being calculated. See `UpTrainMetric` for more
information.
:returns:
A nested list of metric results. Each input can have one or more
A dictionary with a single `results` entry that contains
a nested list of metric results. Each input can have one or more
results, depending on the metric. Each result is a dictionary
containing the following keys and values:
* `name` - The name of the metric.
* `score` - The score of the metric.
* `explanation` - An optional explanation of the score.
- `name` - The name of the metric.
- `score` - The score of the metric.
- `explanation` - An optional explanation of the score.
"""
# The backend requires random access to the data, so we can't stream it.
InputConverters.validate_input_parameters(self.metric, self.descriptor.input_parameters, inputs)
Expand All @@ -125,7 +129,12 @@ def run(self, **inputs) -> Dict[str, Any]:

def to_dict(self) -> Dict[str, Any]:
"""
Serialize this component to a dictionary.
Serializes the component to a dictionary.

:returns:
Dictionary with serialized data.
:raises DeserializationError:
If the component cannot be serialized.
"""

def check_serializable(obj: Any):
Expand All @@ -151,18 +160,17 @@ def check_serializable(obj: Any):
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "UpTrainEvaluator":
"""
Deserialize a component from a dictionary.
Deserializes the component from a dictionary.

:param data:
The dictionary to deserialize from.
Dictionary to deserialize from.
:returns:
Deserialized component.
"""
deserialize_secrets_inplace(data["init_parameters"], ["api_key"])
return default_from_dict(cls, data)

def _init_backend(self):
"""
Initialize the UpTrain backend.
"""
if isinstance(self.descriptor.backend, Evals):
if self.metric_params is not None:
msg = (
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,48 +14,51 @@ class UpTrainMetric(Enum):
Metrics supported by UpTrain.
"""

#: Context relevance.
#: Context relevance.\
#: Inputs - `questions: List[str], contexts: List[List[str]]`
CONTEXT_RELEVANCE = "context_relevance"

#: Factual accuracy.
#: Factual accuracy.\
#: Inputs - `questions: List[str], contexts: List[List[str]], responses: List[str]`
FACTUAL_ACCURACY = "factual_accuracy"

#: Response relevance.
#: Response relevance.\
#: Inputs - `questions: List[str], responses: List[str]`
RESPONSE_RELEVANCE = "response_relevance"

#: Response completeness.
#: Response completeness.\
#: Inputs - `questions: List[str], responses: List[str]`
RESPONSE_COMPLETENESS = "response_completeness"

#: Response completeness with respect to context.
#: Response completeness with respect to context.\
#: Inputs - `questions: List[str], contexts: List[List[str]], responses: List[str]`
RESPONSE_COMPLETENESS_WRT_CONTEXT = "response_completeness_wrt_context"

#: Response consistency.
#: Response consistency.\
#: Inputs - `questions: List[str], contexts: List[List[str]], responses: List[str]`
RESPONSE_CONSISTENCY = "response_consistency"

#: Response conciseness.
#: Response conciseness.\
#: Inputs - `questions: List[str], responses: List[str]`
RESPONSE_CONCISENESS = "response_conciseness"

#: Language critique.
#: Language critique.\
#: Inputs - `responses: List[str]`
CRITIQUE_LANGUAGE = "critique_language"

#: Tone critique.
#: Inputs - `responses: List[str]`
#: Tone critique.\
#: Inputs - `responses: List[str]`\
#: Parameters - `llm_persona: str`
CRITIQUE_TONE = "critique_tone"

#: Guideline adherence.
#: Inputs - `questions: List[str], responses: List[str]`
#: Guideline adherence.\
#: Inputs - `questions: List[str], responses: List[str]`\
#: Parameters - `guideline: str`, `guideline_name: str`, `response_schema: Optional[str]`
GUIDELINE_ADHERENCE = "guideline_adherence"

#: Response matching.
#: Inputs - `responses: List[str], ground_truths: List[str]`
#: Response matching.\
#: Inputs - `responses: List[str], ground_truths: List[str]`\
#: Parameters - `method: str`
RESPONSE_MATCHING = "response_matching"

def __str__(self):
Expand Down