-
Notifications
You must be signed in to change notification settings - Fork 526
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(tf): support tensor fitting with hybrid descriptor
Fix #4527. Signed-off-by: Jinzhe Zeng <[email protected]>
- Loading branch information
Showing
4 changed files
with
176 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
import numpy as np | ||
|
||
from deepmd.tf.descriptor.hybrid import ( | ||
DescrptHybrid, | ||
) | ||
from deepmd.tf.env import ( | ||
tf, | ||
) | ||
from deepmd.tf.fit import ( | ||
DipoleFittingSeA, | ||
) | ||
from deepmd.tf.model import ( | ||
DipoleModel, | ||
) | ||
|
||
from .common import ( | ||
DataSystem, | ||
gen_data, | ||
j_loader, | ||
) | ||
|
||
GLOBAL_ENER_FLOAT_PRECISION = tf.float64 | ||
GLOBAL_TF_FLOAT_PRECISION = tf.float64 | ||
GLOBAL_NP_FLOAT_PRECISION = np.float64 | ||
|
||
|
||
class TestModel(tf.test.TestCase): | ||
def setUp(self) -> None: | ||
gen_data() | ||
|
||
def test_model(self) -> None: | ||
jfile = "polar_se_a.json" | ||
jdata = j_loader(jfile) | ||
|
||
systems = jdata["systems"] | ||
set_pfx = "set" | ||
batch_size = jdata["batch_size"] | ||
Check warning Code scanning / CodeQL Variable defined multiple times Warning test
This assignment to 'batch_size' is unnecessary as it is
redefined Error loading related location Loading |
||
test_size = jdata["numb_test"] | ||
Check warning Code scanning / CodeQL Variable defined multiple times Warning test
This assignment to 'test_size' is unnecessary as it is
redefined Error loading related location Loading |
||
batch_size = 1 | ||
test_size = 1 | ||
rcut = jdata["model"]["descriptor"]["rcut"] | ||
|
||
data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) | ||
|
||
test_data = data.get_test() | ||
numb_test = 1 | ||
|
||
descrpt = DescrptHybrid( | ||
list=[ | ||
{ | ||
"type": "se_e2_a", | ||
"sel": [20, 20], | ||
"rcut_smth": 1.8, | ||
"rcut": 6.0, | ||
"neuron": [2, 4, 8], | ||
"resnet_dt": False, | ||
"axis_neuron": 8, | ||
"precision": "float64", | ||
"type_one_side": True, | ||
"seed": 1, | ||
}, | ||
{ | ||
"type": "se_e2_a", | ||
"sel": [20, 20], | ||
"rcut_smth": 1.8, | ||
"rcut": 6.0, | ||
"neuron": [2, 4, 8], | ||
"resnet_dt": False, | ||
"axis_neuron": 8, | ||
"precision": "float64", | ||
"type_one_side": True, | ||
"seed": 1, | ||
}, | ||
{ | ||
"type": "se_e3", | ||
"sel": [5, 5], | ||
"rcut_smth": 1.8, | ||
"rcut": 2.0, | ||
"neuron": [2], | ||
"resnet_dt": False, | ||
"precision": "float64", | ||
"seed": 1, | ||
}, | ||
] | ||
) | ||
jdata["model"]["fitting_net"].pop("type", None) | ||
jdata["model"]["fitting_net"].pop("fit_diag", None) | ||
jdata["model"]["fitting_net"]["ntypes"] = descrpt.get_ntypes() | ||
jdata["model"]["fitting_net"]["dim_descrpt"] = descrpt.get_dim_out() | ||
jdata["model"]["fitting_net"]["embedding_width"] = descrpt.get_dim_rot_mat_1() | ||
fitting = DipoleFittingSeA(**jdata["model"]["fitting_net"], uniform_seed=True) | ||
model = DipoleModel(descrpt, fitting) | ||
|
||
# model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) | ||
input_data = { | ||
"coord": [test_data["coord"]], | ||
"box": [test_data["box"]], | ||
"type": [test_data["type"]], | ||
"natoms_vec": [test_data["natoms_vec"]], | ||
"default_mesh": [test_data["default_mesh"]], | ||
"fparam": [test_data["fparam"]], | ||
} | ||
model._compute_input_stat(input_data) | ||
|
||
t_prop_c = tf.placeholder(tf.float32, [5], name="t_prop_c") | ||
t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name="i_coord") | ||
t_type = tf.placeholder(tf.int32, [None], name="i_type") | ||
t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name="i_natoms") | ||
t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name="i_box") | ||
t_mesh = tf.placeholder(tf.int32, [None], name="i_mesh") | ||
is_training = tf.placeholder(tf.bool) | ||
t_fparam = None | ||
|
||
model_pred = model.build( | ||
t_coord, | ||
t_type, | ||
t_natoms, | ||
t_box, | ||
t_mesh, | ||
t_fparam, | ||
suffix="dipole_se_a", | ||
reuse=False, | ||
) | ||
dipole = model_pred["dipole"] | ||
gdipole = model_pred["global_dipole"] | ||
force = model_pred["force"] | ||
virial = model_pred["virial"] | ||
atom_virial = model_pred["atom_virial"] | ||
|
||
feed_dict_test = { | ||
t_prop_c: test_data["prop_c"], | ||
t_coord: np.reshape(test_data["coord"][:numb_test, :], [-1]), | ||
t_box: test_data["box"][:numb_test, :], | ||
t_type: np.reshape(test_data["type"][:numb_test, :], [-1]), | ||
t_natoms: test_data["natoms_vec"], | ||
t_mesh: test_data["default_mesh"], | ||
is_training: False, | ||
} | ||
|
||
sess = self.cached_session().__enter__() | ||
sess.run(tf.global_variables_initializer()) | ||
[p, gp, f, v, av] = sess.run( | ||
[dipole, gdipole, force, virial, atom_virial], feed_dict=feed_dict_test | ||
) |