-
Notifications
You must be signed in to change notification settings - Fork 73
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #157 from davidusb-geek/davidusb-geek/debug/debug_…
…scripts Added new scripts for debugging and testing new clustering feature
- Loading branch information
Showing
4 changed files
with
355 additions
and
2 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
# -*- coding: utf-8 -*- | ||
''' | ||
This is a script for analysis plot. | ||
To use this script you will need plotly and kaleido. Install them using: | ||
pip install plotly | ||
pip install kaleido | ||
Before running this script you should perform a perfect optimization for each type of cost function: | ||
profit, cost and self-consumption | ||
''' | ||
import numpy as np | ||
import pandas as pd | ||
import pathlib | ||
import yaml | ||
import json | ||
import pickle | ||
import plotly.express as px | ||
import plotly.subplots as sp | ||
import plotly.io as pio | ||
pio.renderers.default = 'browser' | ||
pd.options.plotting.backend = "plotly" | ||
|
||
from emhass.retrieve_hass import retrieve_hass | ||
from emhass.optimization import optimization | ||
from emhass.forecast import forecast | ||
from emhass.utils import get_root, get_yaml_parse, get_days_list, get_logger | ||
|
||
# the root folder | ||
root = str(get_root(__file__, num_parent=2)) | ||
# create logger | ||
logger, ch = get_logger(__name__, root, save_to_file=False) | ||
|
||
def get_forecast_optim_objects(retrieve_hass_conf, optim_conf, plant_conf, | ||
params, get_data_from_file): | ||
fcst = forecast(retrieve_hass_conf, optim_conf, plant_conf, | ||
params, root, logger, get_data_from_file=get_data_from_file) | ||
df_weather = fcst.get_weather_forecast(method='solar.forecast') | ||
P_PV_forecast = fcst.get_power_from_weather(df_weather) | ||
P_load_forecast = fcst.get_load_forecast(method=optim_conf['load_forecast_method']) | ||
df_input_data_dayahead = pd.concat([P_PV_forecast, P_load_forecast], axis=1) | ||
df_input_data_dayahead.columns = ['P_PV_forecast', 'P_load_forecast'] | ||
opt = optimization(retrieve_hass_conf, optim_conf, plant_conf, | ||
fcst.var_load_cost, fcst.var_prod_price, | ||
'cost', root, logger) | ||
return fcst, P_PV_forecast, P_load_forecast, df_input_data_dayahead, opt | ||
|
||
def build_params(params, options): | ||
# Updating variables in retrieve_hass_conf | ||
params['retrieve_hass_conf'][0]['freq'] = options['optimization_time_step'] | ||
params['retrieve_hass_conf'][1]['days_to_retrieve'] = options['historic_days_to_retrieve'] | ||
params['retrieve_hass_conf'][2]['var_PV'] = options['sensor_power_photovoltaics'] | ||
params['retrieve_hass_conf'][3]['var_load'] = options['sensor_power_load_no_var_loads'] | ||
params['retrieve_hass_conf'][6]['var_replace_zero'] = [options['sensor_power_photovoltaics']] | ||
params['retrieve_hass_conf'][7]['var_interp'] = [options['sensor_power_photovoltaics'], options['sensor_power_load_no_var_loads']] | ||
params['retrieve_hass_conf'][8]['method_ts_round'] = options['method_ts_round'] | ||
# Updating variables in optim_conf | ||
params['optim_conf'][0]['set_use_battery'] = options['set_use_battery'] | ||
params['optim_conf'][2]['num_def_loads'] = options['number_of_deferrable_loads'] | ||
params['optim_conf'][3]['P_deferrable_nom'] = [i['nominal_power_of_deferrable_loads'] for i in options['list_nominal_power_of_deferrable_loads']] | ||
params['optim_conf'][4]['def_total_hours'] = [i['operating_hours_of_each_deferrable_load'] for i in options['list_operating_hours_of_each_deferrable_load']] | ||
params['optim_conf'][5]['treat_def_as_semi_cont'] = [i['treat_deferrable_load_as_semi_cont'] for i in options['list_treat_deferrable_load_as_semi_cont']] | ||
params['optim_conf'][6]['set_def_constant'] = [False for i in range(len(params['optim_conf'][3]['P_deferrable_nom']))] | ||
params['optim_conf'][8]['load_forecast_method'] = options['load_forecast_method'] | ||
start_hours_list = [i['peak_hours_periods_start_hours'] for i in options['list_peak_hours_periods_start_hours']] | ||
end_hours_list = [i['peak_hours_periods_end_hours'] for i in options['list_peak_hours_periods_end_hours']] | ||
num_peak_hours = len(start_hours_list) | ||
list_hp_periods_list = [{'period_hp_'+str(i+1):[{'start':start_hours_list[i]},{'end':end_hours_list[i]}]} for i in range(num_peak_hours)] | ||
params['optim_conf'][10]['list_hp_periods'] = list_hp_periods_list | ||
params['optim_conf'][11]['load_cost_hp'] = options['load_peak_hours_cost'] | ||
params['optim_conf'][12]['load_cost_hc'] = options['load_offpeak_hours_cost'] | ||
params['optim_conf'][14]['prod_sell_price'] = options['photovoltaic_production_sell_price'] | ||
params['optim_conf'][15]['set_total_pv_sell'] = options['set_total_pv_sell'] | ||
params['optim_conf'][16]['lp_solver'] = options['lp_solver'] | ||
params['optim_conf'][17]['lp_solver_path'] = options['lp_solver_path'] | ||
params['optim_conf'][18]['set_nocharge_from_grid'] = options['set_nocharge_from_grid'] | ||
params['optim_conf'][19]['set_nodischarge_to_grid'] = options['set_nodischarge_to_grid'] | ||
params['optim_conf'][20]['set_battery_dynamic'] = options['set_battery_dynamic'] | ||
params['optim_conf'][21]['battery_dynamic_max'] = options['battery_dynamic_max'] | ||
params['optim_conf'][22]['battery_dynamic_min'] = options['battery_dynamic_min'] | ||
params['optim_conf'][23]['weight_battery_discharge'] = options['weight_battery_discharge'] | ||
params['optim_conf'][24]['weight_battery_charge'] = options['weight_battery_charge'] | ||
# Updating variables in plant_conf | ||
params['plant_conf'][0]['P_grid_max'] = options['maximum_power_from_grid'] | ||
params['plant_conf'][1]['module_model'] = [i['pv_module_model'] for i in options['list_pv_module_model']] | ||
params['plant_conf'][2]['inverter_model'] = [i['pv_inverter_model'] for i in options['list_pv_inverter_model']] | ||
params['plant_conf'][3]['surface_tilt'] = [i['surface_tilt'] for i in options['list_surface_tilt']] | ||
params['plant_conf'][4]['surface_azimuth'] = [i['surface_azimuth'] for i in options['list_surface_azimuth']] | ||
params['plant_conf'][5]['modules_per_string'] = [i['modules_per_string'] for i in options['list_modules_per_string']] | ||
params['plant_conf'][6]['strings_per_inverter'] = [i['strings_per_inverter'] for i in options['list_strings_per_inverter']] | ||
params['plant_conf'][7]['Pd_max'] = options['battery_discharge_power_max'] | ||
params['plant_conf'][8]['Pc_max'] = options['battery_charge_power_max'] | ||
params['plant_conf'][9]['eta_disch'] = options['battery_discharge_efficiency'] | ||
params['plant_conf'][10]['eta_ch'] = options['battery_charge_efficiency'] | ||
params['plant_conf'][11]['Enom'] = options['battery_nominal_energy_capacity'] | ||
params['plant_conf'][12]['SOCmin'] = options['battery_minimum_state_of_charge'] | ||
params['plant_conf'][13]['SOCmax'] = options['battery_maximum_state_of_charge'] | ||
params['plant_conf'][14]['SOCtarget'] = options['battery_target_state_of_charge'] | ||
return params | ||
|
||
if __name__ == '__main__': | ||
get_data_from_file = False | ||
config_path = pathlib.Path(root+'/config_emhass.yaml') | ||
|
||
with open(config_path, 'r') as file: | ||
config = yaml.load(file, Loader=yaml.FullLoader) | ||
retrieve_hass_conf = config['retrieve_hass_conf'] | ||
optim_conf = config['optim_conf'] | ||
plant_conf = config['plant_conf'] | ||
|
||
params = {} | ||
params['retrieve_hass_conf'] = retrieve_hass_conf | ||
params['optim_conf'] = optim_conf | ||
params['plant_conf'] = plant_conf | ||
|
||
options_json = pathlib.Path(root+'/scripts/special_options.json') | ||
with options_json.open('r') as data: | ||
options = json.load(data) | ||
|
||
params = build_params(params, options) | ||
|
||
with open(pathlib.Path(root) / 'secrets_emhass.yaml', 'r') as file: | ||
input_secrets = yaml.load(file, Loader=yaml.FullLoader) | ||
|
||
params['params_secrets'] = input_secrets | ||
|
||
pv_power_forecast = [0, 8, 27, 42, 47, 41, 25, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 52, 73, 74, 68, 44, 12, 0, 0, 0, 0] | ||
load_power_forecast = [2850, 3021, 3107, 3582, 2551, 2554, 1856, 2505, 1768, 2540, 1722, 2463, 1670, 1379, 1165, 1000, 1641, 1181, 1861, 1414, 1467, 1344, 1209, 1531] | ||
load_cost_forecast = [17.836, 19.146, 18.753, 17.838, 17.277, 16.282, 16.736, 16.047, 17.004, 19.982, 17.17, 16.968, 16.556, 16.21, 12.333, 10.937] | ||
prod_price_forecast = [6.651, 7.743, 7.415, 6.653, 6.185, 5.356, 5.734, 5.16, 5.958, 8.439, 6.096, 5.928, 5.584, 5.296, 4.495, 3.332] | ||
prediction_horizon = 16 | ||
soc_init = 0.98 | ||
soc_final = 0.3 | ||
def_total_hours = [0] | ||
alpha = 1 | ||
beta = 0 | ||
|
||
params['passed_data'] = {'pv_power_forecast':pv_power_forecast,'load_power_forecast':load_power_forecast, | ||
'load_cost_forecast':load_cost_forecast,'prod_price_forecast':prod_price_forecast, | ||
'prediction_horizon':prediction_horizon,'soc_init':soc_init,'soc_final':soc_final, | ||
'def_total_hours':def_total_hours,'alpha':alpha,'beta':beta} | ||
|
||
optim_conf[7]['weather_forecast_method'] = 'list' | ||
optim_conf[8]['load_forecast_method'] = 'list' | ||
optim_conf[9]['load_cost_forecast_method'] = 'list' | ||
optim_conf[13]['prod_price_forecast_method'] = 'list' | ||
|
||
data_path = pathlib.Path(root+'/scripts/data_temp.pkl') | ||
|
||
if data_path.is_file(): | ||
logger.info("Loading a previous data file") | ||
with open(data_path, "rb") as fid: | ||
fcst, P_PV_forecast, P_load_forecast, df_input_data_dayahead, opt, df_input_data = pickle.load(fid) | ||
else: | ||
|
||
retrieve_hass_conf, optim_conf, plant_conf = get_yaml_parse(config_path, use_secrets=True, params = json.dumps(params)) | ||
rh = retrieve_hass(retrieve_hass_conf['hass_url'], retrieve_hass_conf['long_lived_token'], | ||
retrieve_hass_conf['freq'], retrieve_hass_conf['time_zone'], | ||
params, root, logger) | ||
days_list = get_days_list(retrieve_hass_conf['days_to_retrieve']) | ||
var_list = [retrieve_hass_conf['var_load'], retrieve_hass_conf['var_PV']] | ||
rh.get_data(days_list, var_list, | ||
minimal_response=False, significant_changes_only=False) | ||
rh.prepare_data(retrieve_hass_conf['var_load'], load_negative = retrieve_hass_conf['load_negative'], | ||
set_zero_min = retrieve_hass_conf['set_zero_min'], | ||
var_replace_zero = retrieve_hass_conf['var_replace_zero'], | ||
var_interp = retrieve_hass_conf['var_interp']) | ||
df_input_data = rh.df_final.copy() | ||
fcst, P_PV_forecast, P_load_forecast, df_input_data_dayahead, opt = \ | ||
get_forecast_optim_objects(retrieve_hass_conf, optim_conf, plant_conf, | ||
json.dumps(params), get_data_from_file) | ||
df_input_data = fcst.get_load_cost_forecast(df_input_data) | ||
df_input_data = fcst.get_prod_price_forecast(df_input_data) | ||
|
||
with open(data_path, 'wb') as fid: | ||
pickle.dump((fcst, P_PV_forecast, P_load_forecast, df_input_data_dayahead, opt, df_input_data), fid, pickle.HIGHEST_PROTOCOL) | ||
|
||
template = 'presentation' | ||
|
||
# Let's plot the input data | ||
fig_inputs1 = df_input_data[['sensor.power_photovoltaics', | ||
'sensor.power_load_no_var_loads_positive']].plot() | ||
fig_inputs1.layout.template = template | ||
fig_inputs1.update_yaxes(title_text = "Powers (W)") | ||
fig_inputs1.update_xaxes(title_text = "Time") | ||
fig_inputs1.show() | ||
|
||
fig_inputs2 = df_input_data[['unit_load_cost', | ||
'unit_prod_price']].plot() | ||
fig_inputs2.layout.template = template | ||
fig_inputs2.update_yaxes(title_text = "Load cost and production sell price (EUR)") | ||
fig_inputs2.update_xaxes(title_text = "Time") | ||
fig_inputs2.show() | ||
|
||
fig_inputs_dah = df_input_data_dayahead.plot() | ||
fig_inputs_dah.layout.template = template | ||
fig_inputs_dah.update_yaxes(title_text = "Powers (W)") | ||
fig_inputs_dah.update_xaxes(title_text = "Time") | ||
fig_inputs_dah.show() | ||
|
||
# Perform a dayahead optimization | ||
'''df_input_data_dayahead = fcst.get_load_cost_forecast(df_input_data_dayahead) | ||
df_input_data_dayahead = fcst.get_prod_price_forecast(df_input_data_dayahead) | ||
opt_res_dah = opt.perform_dayahead_forecast_optim(df_input_data_dayahead, P_PV_forecast, P_load_forecast) | ||
fig_res_dah = opt_res_dah[['P_deferrable0', 'P_deferrable1', 'P_grid']].plot() | ||
fig_res_dah.layout.template = template | ||
fig_res_dah.update_yaxes(title_text = "Powers (W)") | ||
fig_res_dah.update_xaxes(title_text = "Time") | ||
fig_res_dah.show()''' | ||
|
||
'''post_mpc_optim: "curl -i -H \"Content-Type: application/json\" -X POST -d '{ | ||
\"load_cost_forecast\":[17.836, 19.146, 18.753, 17.838, 17.277, 16.282, 16.736, 16.047, 17.004, 19.982, 17.17, 16.968, 16.556, 16.21, 12.333, 10.937], | ||
\"prod_price_forecast\":[6.651, 7.743, 7.415, 6.653, 6.185, 5.356, 5.734, 5.16, 5.958, 8.439, 6.096, 5.928, 5.584, 5.296, 4.495, 3.332], | ||
\"prediction_horizon\":16, | ||
\"pv_power_forecast\": [0, 8, 27, 42, 47, 41, 25, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 52, 73, 74, 68, 44, 12, 0, 0, 0, 0], | ||
\"alpha\": 1, \"beta\": 0, \"soc_init\":0.98, \"soc_final\":0.3, \"def_total_hours\":[0] | ||
}' http://localhost:5000/action/naive-mpc-optim"''' | ||
|
||
# Perform a MPC optimization | ||
df_input_data_dayahead['unit_load_cost'] = load_cost_forecast | ||
df_input_data_dayahead.loc[df_input_data_dayahead.index[2]:df_input_data_dayahead.index[6],'unit_load_cost'] = 150 | ||
df_input_data_dayahead['unit_prod_price'] = prod_price_forecast | ||
|
||
opt.optim_conf['weight_battery_discharge'] = 0.0 | ||
opt.optim_conf['weight_battery_charge'] = 0.0 | ||
opt.optim_conf['battery_dynamic_max'] = 0.9 | ||
opt.optim_conf['set_nocharge_from_grid'] = False | ||
opt.optim_conf['set_nodischarge_to_grid'] = False | ||
opt.optim_conf['set_total_pv_sell'] = False | ||
|
||
opt_res_dayahead = opt.perform_naive_mpc_optim( | ||
df_input_data_dayahead, P_PV_forecast, P_load_forecast, prediction_horizon, | ||
soc_init=soc_init, soc_final=soc_final, def_total_hours=def_total_hours) | ||
fig_res_mpc = opt_res_dayahead[['P_batt', 'P_grid']].plot() | ||
fig_res_mpc.layout.template = template | ||
fig_res_mpc.update_yaxes(title_text = "Powers (W)") | ||
fig_res_mpc.update_xaxes(title_text = "Time") | ||
fig_res_mpc.show() |
Oops, something went wrong.