Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Delta lake base #5259

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added datahub-web-react/src/images/deltalakelogo.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
142 changes: 142 additions & 0 deletions metadata-ingestion/docs/sources/delta-lake/delta-lake.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
## Usage Guide

If you are new to [Delta Lake](https://delta.io/) and want to test out a simple integration with Delta Lake and DataHub, you can follow this guide.

### Delta Table on Local File System

#### Step 1
Create a delta table using the sample PySpark code below if you don't have a delta table you can point to.

```python
import uuid
import random
from pyspark.sql import SparkSession
from delta.tables import DeltaTable

def generate_data():
return [(y, m, d, str(uuid.uuid4()), str(random.randrange(10000) % 26 + 65) * 3, random.random()*10000)
for d in range(1, 29)
for m in range(1, 13)
for y in range(2000, 2021)]

jar_packages = ["org.apache.hadoop:hadoop-aws:3.2.3", "io.delta:delta-core_2.12:1.2.1"]
spark = SparkSession.builder \
.appName("quickstart") \
.master("local[*]") \
.config("spark.jars.packages", ",".join(jar_packages)) \
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") \
.config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog") \
.getOrCreate()

table_path = "quickstart/my-table"
columns = ["year", "month", "day", "sale_id", "customer", "total_cost"]
spark.sparkContext.parallelize(generate_data()).toDF(columns).repartition(1).write.format("delta").save(table_path)

df = spark.read.format("delta").load(table_path)
df.show()

```

#### Step 2
Create a datahub ingestion yaml file (delta.dhub.yaml) to ingest metadata from the delta table you just created.

```yaml
source:
type: "delta-lake"
config:
base_path: "quickstart/my-table"

sink:
type: "datahub-rest"
config:
server: "http://localhost:8080"
```

Note: Make sure you run the Spark code as well as recipe from same folder otherwise use absolute paths.

#### Step 3
Execute the ingestion recipe:
```shell
datahub ingest -c delta.dhub.yaml
```

### Delta Table on S3

#### Step 1
Set up your AWS credentials by creating an AWS credentials config file; typically in '$HOME/.aws/credentials'.
```
[my-creds]
aws_access_key_id: ######
aws_secret_access_key: ######
```
Step 2: Create a Delta Table using the PySpark sample code below unless you already have Delta Tables on your S3.
```python
from pyspark.sql import SparkSession
from delta.tables import DeltaTable
from configparser import ConfigParser
import uuid
import random
def generate_data():
return [(y, m, d, str(uuid.uuid4()), str(random.randrange(10000) % 26 + 65) * 3, random.random()*10000)
for d in range(1, 29)
for m in range(1, 13)
for y in range(2000, 2021)]

jar_packages = ["org.apache.hadoop:hadoop-aws:3.2.3", "io.delta:delta-core_2.12:1.2.1"]
spark = SparkSession.builder \
.appName("quickstart") \
.master("local[*]") \
.config("spark.jars.packages", ",".join(jar_packages)) \
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") \
.config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog") \
.getOrCreate()


config_object = ConfigParser()
config_object.read("$HOME/.aws/credentials")
profile_info = config_object["my-creds"]
access_id = profile_info["aws_access_key_id"]
access_key = profile_info["aws_secret_access_key"]

hadoop_conf = spark._jsc.hadoopConfiguration()
hadoop_conf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
hadoop_conf.set("fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider")
hadoop_conf.set("fs.s3a.access.key", access_id)
hadoop_conf.set("fs.s3a.secret.key", access_key)

table_path = "s3a://my-bucket/my-folder/sales-table"
columns = ["year", "month", "day", "sale_id", "customer", "total_cost"]
spark.sparkContext.parallelize(generate_data()).toDF(columns).repartition(1).write.format("delta").save(table_path)
df = spark.read.format("delta").load(table_path)
df.show()

```

#### Step 3
Create a datahub ingestion yaml file (delta.s3.dhub.yaml) to ingest metadata from the delta table you just created.

```yml
source:
type: "delta-lake"
config:
base_path: "s3://my-bucket/my-folder/sales-table"
s3:
aws_config:
aws_access_key_id: <<Access key>>
aws_secret_access_key: <<secret key>>

sink:
type: "datahub-rest"
config:
server: "http://localhost:8080"
```

#### Step 4
Execute the ingestion recipe:
```shell
datahub ingest -c delta.s3.dhub.yaml
```

### Note

The above recipes are minimal recipes. Please refer to [Config Details](#config-details) section for the full configuration.
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
source:
type: delta-lake
config:
env: "PROD"
platform_instance: "my-delta-lake"
base_path: "/path/to/data/folder"

sink:
# sink configs
10 changes: 9 additions & 1 deletion metadata-ingestion/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,11 @@ def get_long_description():
"wcmatch",
}

delta_lake = {
*s3_base,
"deltalake",
}

usage_common = {
"sqlparse",
}
Expand Down Expand Up @@ -196,6 +201,7 @@ def get_long_description():
"datahub-business-glossary": set(),
"data-lake": {*data_lake_base, *data_lake_profiling},
"s3": {*s3_base, *data_lake_profiling},
"delta-lake": {*data_lake_profiling, *delta_lake},
"dbt": {"requests"} | aws_common,
"druid": sql_common | {"pydruid>=0.6.2"},
# Starting with 7.14.0 python client is checking if it is connected to elasticsearch client. If its not it throws
Expand Down Expand Up @@ -350,6 +356,7 @@ def get_long_description():
"redshift",
"redshift-usage",
"data-lake",
"delta-lake",
"s3",
"tableau",
"trino",
Expand Down Expand Up @@ -447,7 +454,7 @@ def get_long_description():
entry_points = {
"console_scripts": ["datahub = datahub.entrypoints:main"],
"datahub.ingestion.source.plugins": [
"csv-enricher = datahub.ingestion.source.csv_enricher:CSVEnricherSource",
"csv-enricher = datahub.ingestion.source.csv_enricher:CSVEnricherSource",
"file = datahub.ingestion.source.file:GenericFileSource",
"sqlalchemy = datahub.ingestion.source.sql.sql_generic:SQLAlchemyGenericSource",
"athena = datahub.ingestion.source.sql.athena:AthenaSource",
Expand All @@ -457,6 +464,7 @@ def get_long_description():
"clickhouse = datahub.ingestion.source.sql.clickhouse:ClickHouseSource",
"clickhouse-usage = datahub.ingestion.source.usage.clickhouse_usage:ClickHouseUsageSource",
"data-lake = datahub.ingestion.source.data_lake:DataLakeSource",
"delta-lake = datahub.ingestion.source.delta_lake:DeltaLakeSource",
"s3 = datahub.ingestion.source.s3:S3Source",
"dbt = datahub.ingestion.source.dbt:DBTSource",
"druid = datahub.ingestion.source.sql.druid:DruidSource",
Expand Down
97 changes: 96 additions & 1 deletion metadata-ingestion/src/datahub/ingestion/source/aws/s3_util.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,103 @@
import logging
import os
from typing import Iterable, Optional

from datahub.emitter.mce_builder import make_tag_urn
from datahub.ingestion.api.common import PipelineContext
from datahub.ingestion.source.aws.aws_common import AwsSourceConfig
from datahub.metadata.schema_classes import GlobalTagsClass, TagAssociationClass

S3_PREFIXES = ["s3://", "s3n://", "s3a://"]

logging.getLogger("py4j").setLevel(logging.ERROR)
logger: logging.Logger = logging.getLogger(__name__)


def get_s3_tags(
bucket_name: str,
key_name: Optional[str],
dataset_urn: str,
aws_config: Optional[AwsSourceConfig],
ctx: PipelineContext,
use_s3_bucket_tags: Optional[bool] = False,
use_s3_object_tags: Optional[bool] = False,
) -> Optional[GlobalTagsClass]:
if aws_config is None:
raise ValueError("aws_config not set. Cannot browse s3")
new_tags = GlobalTagsClass(tags=[])
tags_to_add = []
if use_s3_bucket_tags:
s3 = aws_config.get_s3_resource()
bucket = s3.Bucket(bucket_name)
try:
tags_to_add.extend(
[
make_tag_urn(f"""{tag["Key"]}:{tag["Value"]}""")
for tag in bucket.Tagging().tag_set
]
)
except s3.meta.client.exceptions.ClientError:
logger.warn(f"No tags found for bucket={bucket_name}")

if use_s3_object_tags and key_name is not None:
s3_client = aws_config.get_s3_client()
object_tagging = s3_client.get_object_tagging(Bucket=bucket_name, Key=key_name)
tag_set = object_tagging["TagSet"]
if tag_set:
tags_to_add.extend(
[make_tag_urn(f"""{tag["Key"]}:{tag["Value"]}""") for tag in tag_set]
)
else:
# Unlike bucket tags, if an object does not have tags, it will just return an empty array
# as opposed to an exception.
logger.warn(f"No tags found for bucket={bucket_name} key={key_name}")
if len(tags_to_add) == 0:
return None
if ctx.graph is not None:
logger.debug("Connected to DatahubApi, grabbing current tags to maintain.")
current_tags: Optional[GlobalTagsClass] = ctx.graph.get_aspect_v2(
entity_urn=dataset_urn,
aspect="globalTags",
aspect_type=GlobalTagsClass,
)
if current_tags:
tags_to_add.extend([current_tag.tag for current_tag in current_tags.tags])
else:
logger.warn("Could not connect to DatahubApi. No current tags to maintain")
# Remove duplicate tags
tags_to_add = list(set(tags_to_add))
new_tags = GlobalTagsClass(
tags=[TagAssociationClass(tag_to_add) for tag_to_add in tags_to_add]
)
return new_tags


def list_folders_path(
s3_uri: str, aws_config: Optional[AwsSourceConfig]
) -> Iterable[str]:
if not is_s3_uri(s3_uri):
raise ValueError("Not a s3 URI: " + s3_uri)
if aws_config is None:
raise ValueError("aws_config not set. Cannot browse s3")
bucket_name = get_bucket_name(s3_uri)
prefix = get_bucket_relative_path(s3_uri)
yield from list_folders(bucket_name, prefix, aws_config)


def list_folders(
bucket_name: str, prefix: str, aws_config: Optional[AwsSourceConfig]
) -> Iterable[str]:
if aws_config is None:
raise ValueError("aws_config not set. Cannot browse s3")
s3_client = aws_config.get_s3_client()
paginator = s3_client.get_paginator("list_objects_v2")
for page in paginator.paginate(Bucket=bucket_name, Prefix=prefix, Delimiter="/"):
for o in page.get("CommonPrefixes", []):
folder: str = str(o.get("Prefix"))
if folder.endswith("/"):
folder = folder[:-1]
yield f"{folder}"


def is_s3_uri(uri: str) -> bool:
return any(uri.startswith(prefix) for prefix in S3_PREFIXES)
Expand All @@ -24,7 +120,6 @@ def get_bucket_relative_path(s3_uri: str) -> str:


def make_s3_urn(s3_uri: str, env: str) -> str:

s3_name = strip_s3_prefix(s3_uri)

if s3_name.endswith("/"):
Expand Down
Loading