-
Notifications
You must be signed in to change notification settings - Fork 113
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
419 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# Dataset Differ | ||
|
||
This utility generates a diff (point and series analysis) of two data files of the same dataset for import analysis. | ||
|
||
**Usage** | ||
``` | ||
python differ.py --currentData=<filepath> --previousData=<filepath> | ||
``` | ||
|
||
Parameter description | ||
currentDataFile: Location of the current MCF data file | ||
previousDataFile: Location of the previous MCF data file | ||
groupbyColumns: Columns to group data for diff analysis in the order var,place,time etc. Default value: “variableMeasured,observationAbout,observationDate” | ||
valueColumns: Columns with statvar value (unit etc.) for diff analysis. Default value: "value,unit" | ||
|
||
Output generated is of the form below showing counts of differences for each variable. | ||
Detailed diff output is written to a file for further analysis. | ||
|
||
variableMeasured added deleted modified same total | ||
0 dcid:var1 1 0 0 0 1 | ||
1 dcid:var2 0 2 1 1 4 | ||
2 dcid:var3 0 0 1 0 1 | ||
3 dcid:var4 0 2 0 0 2 |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
# Copyright 2020 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from absl import app | ||
from absl import flags | ||
from absl import logging | ||
import pandas as pd | ||
import helper | ||
import os | ||
|
||
FLAGS = flags.FLAGS | ||
flags.DEFINE_string('current_data', '', 'Path to the current MCF data.') | ||
flags.DEFINE_string('previous_data', '', 'Path to the previous MCF data.') | ||
flags.DEFINE_string('output_location', 'results', 'Path to the output data.') | ||
|
||
flags.DEFINE_string('groupby_columns', 'variableMeasured,observationAbout,observationDate', | ||
'Columns to group data for diff analysis in the order (var,place,time etc.).') | ||
flags.DEFINE_string('value_columns', 'value,unit', | ||
'Columns with statvar value (unit etc.) for diff analysis.') | ||
|
||
SAMPLE_COUNT=3 | ||
|
||
class DatasetDiffer: | ||
''' | ||
This utility generates a diff (point and series analysis) | ||
of two data files of the same dataset for import analysis. | ||
Usage: | ||
$ python differ.py --current_data=<filepath> --previous_data=<filepath> | ||
Summary output generated is of the form below showing counts of differences for each | ||
variable. Detailed diff output is written to files for further analysis. | ||
variableMeasured added deleted modified same total | ||
0 dcid:var1 1 0 0 0 1 | ||
1 dcid:var2 0 2 1 1 4 | ||
2 dcid:var3 0 0 1 0 1 | ||
3 dcid:var4 0 2 0 0 2 | ||
''' | ||
|
||
def __init__(self, groupby_columns, value_columns): | ||
self.groupby_columns = groupby_columns.split(',') | ||
self.value_columns = value_columns.split(',') | ||
self.variable_column = self.groupby_columns[0] | ||
self.place_column = self.groupby_columns[1] | ||
self.time_column = self.groupby_columns[2] | ||
self.diff_column = '_diff_result' | ||
|
||
def __cleanup_data(self, df: pd.DataFrame): | ||
for column in ['added', 'deleted', 'modified', 'same']: | ||
df[column] = df[column] if column in df.columns else 0 | ||
df[column] = df[column].fillna(0).astype(int) | ||
|
||
# Pro-rocesses two dataset files to identify changes. | ||
def process_data(self, previous_df: pd.DataFrame, current_df: pd.DataFrame) -> pd.DataFrame: | ||
cur_df_columns = current_df.columns.values.tolist() | ||
self.groupby_columns = [i for i in self.groupby_columns if i in cur_df_columns] | ||
self.value_columns = [i for i in self.value_columns if i in cur_df_columns] | ||
df1 = previous_df.loc[:, self.groupby_columns + self.value_columns] | ||
df2 = current_df.loc[:, self.groupby_columns + self.value_columns] | ||
df1['_value_combined'] = df1[self.value_columns]\ | ||
.apply(lambda row: '_'.join(row.values.astype(str)), axis=1) | ||
df2['_value_combined'] = df2[self.value_columns]\ | ||
.apply(lambda row: '_'.join(row.values.astype(str)), axis=1) | ||
df1.drop(columns=self.value_columns, inplace=True) | ||
df2.drop(columns=self.value_columns, inplace=True) | ||
# Perform outer join operation to identify differences. | ||
result = pd.merge(df1, df2, on = self.groupby_columns, how='outer', indicator=self.diff_column) | ||
result[self.diff_column] = result.apply( | ||
lambda row: 'added' if row[self.diff_column] == 'right_only' \ | ||
else 'deleted' if row[self.diff_column] == 'left_only' \ | ||
else 'modified' if row['_value_combined_x'] != row['_value_combined_y'] \ | ||
else 'same', axis=1) | ||
return result | ||
|
||
# Performs point diff analysis to identify data point changes. | ||
def point_analysis(self, in_data: pd.DataFrame) -> (pd.DataFrame, pd.DataFrame): | ||
column_list = [self.variable_column, self.place_column, self.time_column, self.diff_column] | ||
result = in_data.loc[:, column_list] | ||
# summary = summary.groupby([variable,'result'], observed=True, as_index=False).agg(['count']).reset_index() | ||
result = result.groupby([self.variable_column, self.diff_column], observed=True, as_index=False)[[self.place_column, self.time_column]].agg(lambda x: x.tolist()) | ||
result['size'] = result.apply(lambda row:len(row[self.place_column]), axis=1) | ||
result[self.place_column] = result.apply(lambda row: row[self.place_column][0:SAMPLE_COUNT], axis=1) | ||
result[self.time_column] = result.apply(lambda row: row[self.time_column][0:SAMPLE_COUNT], axis=1) | ||
# result = result.groupby( | ||
# [self.variable_column, self.diff_column], observed=True, as_index=False).size() | ||
summary = result.pivot( | ||
index=self.variable_column, columns=self.diff_column, values='size')\ | ||
.reset_index().rename_axis(None, axis=1) | ||
self.__cleanup_data(summary) | ||
summary['total'] = summary.apply( | ||
lambda row: row['added'] + row['deleted'] + row['modified'] + row['same'] , axis=1) | ||
return summary, result | ||
|
||
# Performs series diff analysis to identify time series changes. | ||
def series_analysis(self, in_data: pd.DataFrame) -> (pd.DataFrame, pd.DataFrame): | ||
column_list = [self.variable_column, self.place_column, self.diff_column] | ||
result = in_data.loc[:, column_list] | ||
result = result.groupby(column_list, as_index=False).size() | ||
result = result.pivot( | ||
index=[self.variable_column, self.place_column], columns=self.diff_column, values='size')\ | ||
.reset_index().rename_axis(None, axis=1) | ||
self.__cleanup_data(result) | ||
result[self.diff_column] = result.apply(lambda row: 'added' if row['added'] > 0 \ | ||
and row['deleted'] + row['modified'] + row['same'] == 0 \ | ||
else 'deleted' if row['deleted'] > 0 and row['added'] + row['modified'] + row['same'] == 0 \ | ||
else 'modified' if row['deleted'] > 0 or row['added'] > 0 or row['modified'] > 0 \ | ||
else 'same', axis=1) | ||
result = result[column_list] | ||
result = result.groupby([self.variable_column, self.diff_column], observed=True, as_index=False)[self.place_column].agg(lambda x: x.tolist()) | ||
result['size'] = result.apply(lambda row:len(row[self.place_column]), axis=1) | ||
result[self.place_column] = result.apply(lambda row: row[self.place_column][0:SAMPLE_COUNT], axis=1) | ||
summary = result.pivot( | ||
index=self.variable_column, columns=self.diff_column, values='size')\ | ||
.reset_index().rename_axis(None, axis=1) | ||
self.__cleanup_data(summary) | ||
summary['total'] = summary.apply( | ||
lambda row: row['added'] + row['deleted'] + row['modified'] + row['same'], axis=1) | ||
return summary, result | ||
|
||
def main(_): | ||
'''Runs the code.''' | ||
differ = DatasetDiffer( | ||
FLAGS.groupby_columns, FLAGS.value_columns) | ||
|
||
if not os.path.exists(FLAGS.output_location): | ||
os.makedirs(FLAGS.output_location) | ||
logging.info('Loading data...') | ||
previous_df = helper.load_data(FLAGS.current_data, FLAGS.output_location) | ||
current_df = helper.load_data(FLAGS.previous_data, FLAGS.output_location) | ||
|
||
logging.info('Processing data...') | ||
in_data = differ.process_data(previous_df, current_df) | ||
|
||
logging.info('Point analysis:') | ||
summary, result = differ.point_analysis(in_data) | ||
result.sort_values(by=[differ.diff_column, differ.variable_column], inplace=True) | ||
print(summary.head(10)) | ||
print(result.head(10)) | ||
helper.write_data(summary, FLAGS.output_location, 'point-analysis-summary.csv') | ||
helper.write_data(result, FLAGS.output_location, 'point-analysis-results.csv') | ||
|
||
logging.info('Series analysis:') | ||
summary, result = differ.series_analysis(in_data) | ||
result.sort_values(by=[differ.diff_column, differ.variable_column], inplace=True) | ||
print(summary.head(10)) | ||
print(result.head(10)) | ||
helper.write_data(summary, FLAGS.output_location, 'series-analysis-summary.csv') | ||
helper.write_data(result, FLAGS.output_location, 'series-analysis-results.csv') | ||
|
||
logging.info('Differ output written to %s', FLAGS.output_location) | ||
|
||
|
||
if __name__ == '__main__': | ||
app.run(main) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# Copyright 2023 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import unittest | ||
import pandas as pd | ||
from pandas.testing import assert_frame_equal | ||
from differ import DatasetDiffer | ||
import helper | ||
|
||
module_dir = os.path.dirname(__file__) | ||
|
||
|
||
class TestDiffer(unittest.TestCase): | ||
''' | ||
Test Class to compare expected output in test/ directory to the | ||
output generated by DatasetDiffer class | ||
''' | ||
|
||
def test_diff_analysis(self): | ||
groupby_columns = 'variableMeasured,observationAbout,observationDate' | ||
value_columns = 'value' | ||
|
||
differ = DatasetDiffer(groupby_columns, value_columns) | ||
current = helper.load_mcf_file( | ||
os.path.join(module_dir, 'test', 'current.mcf')) | ||
previous = helper.load_mcf_file( | ||
os.path.join(module_dir, 'test', 'previous.mcf')) | ||
|
||
in_data = differ.process_data(previous, current) | ||
summary, result = differ.point_analysis(in_data) | ||
result = pd.read_csv(os.path.join(module_dir, 'test', 'result1.csv')) | ||
assert_frame_equal(summary, result) | ||
|
||
summary, result = differ.series_analysis(in_data) | ||
result = pd.read_csv(os.path.join(module_dir, 'test', 'result2.csv')) | ||
assert_frame_equal(summary, result) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
|
||
import pandas as pd | ||
import re | ||
import glob | ||
import os | ||
from google.cloud.storage import Client | ||
|
||
# Reads an MCF text file as a dataframe. | ||
def load_mcf_file(file: str) -> pd.DataFrame: | ||
mcf_file = open(file, 'r', encoding='utf-8') | ||
mcf_contents = mcf_file.read() | ||
mcf_file.close() | ||
# nodes separated by a blank line | ||
mcf_nodes_text = mcf_contents.split('\n\n') | ||
# lines seprated as property: constraint | ||
mcf_line = re.compile(r'^(\w+): (.*)$') | ||
mcf_nodes = [] | ||
for node in mcf_nodes_text: | ||
current_mcf_node = {} | ||
for line in node.split('\n'): | ||
parsed_line = mcf_line.match(line) | ||
if parsed_line is not None: | ||
current_mcf_node[parsed_line.group(1)] = parsed_line.group(2) | ||
if current_mcf_node and current_mcf_node['typeOf'] == 'dcid:StatVarObservation': | ||
mcf_nodes.append(current_mcf_node) | ||
df = pd.DataFrame(mcf_nodes) | ||
return df | ||
|
||
def load_mcf_files(path: str) -> pd.DataFrame: | ||
'''Load all sharded files in the given directory and combine into a | ||
single dataframe.''' | ||
df = pd.DataFrame() | ||
filenames = glob.glob(path + '.mcf') | ||
for filename in filenames: | ||
df2 = load_mcf_file(filename) | ||
# Merge data frames, expects same headers | ||
df = pd.concat([df, df2]) | ||
return df | ||
|
||
def write_data(df: pd.DataFrame, path: str, file: str): | ||
out_file = open(os.path.join(path, file), | ||
mode='w', encoding='utf-8') | ||
df.to_csv(out_file, index=False, mode='w') | ||
out_file.close() | ||
|
||
def load_data(path: str, tmp_dir: str ) -> pd.DataFrame: | ||
if path.startswith('gs://'): | ||
path = get_gcs_data(path, tmp_dir) | ||
|
||
if path.endswith('*'): | ||
return load_mcf_files(path) | ||
else: | ||
return load_mcf_file(path) | ||
|
||
def get_gcs_data(uri: str, tmp_dir: str) -> str: | ||
client = Client() | ||
bucket = client.get_bucket(uri.split('/')[2]) | ||
if uri.endswith('*'): | ||
blobs = client.list_blobs(bucket) | ||
for blob in blobs: | ||
path = os.path.join(os.getcwd(), tmp_dir, blob.name) | ||
blob.download_to_filename(path) | ||
return os.path.join(os.getcwd(), tmp_dir, '*') | ||
else: | ||
file_name = uri.split('/')[3] | ||
blob = bucket.get_blob(file_name) | ||
path = os.path.join(os.getcwd(), tmp_dir, file_name) | ||
blob.download_to_filename(path) | ||
return path |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
Node: cpcb_air_quality/E17/944d9e6d-ec38-4e61-175a-9bbabfd35f97 | ||
observationDate: "2024-09-24T12:00:00" | ||
unit: dcid:MicrogramsPerCubicMeter | ||
observationAbout: dcid:cpcpAq/Secretariat_Amaravati___APPCB | ||
variableMeasured: dcid:Max_Concentration_AirPollutant_Ozone | ||
value: 53.0 | ||
typeOf: dcid:StatVarObservation | ||
dcid: "dc/o/bhdp3vy7dee0d" | ||
|
||
Node: cpcb_air_quality/E18/944d9e6d-ec38-4e61-175a-9bbabfd35f97 | ||
observationDate: "2024-09-24T12:00:00" | ||
unit: dcid:MicrogramsPerCubicMeter | ||
observationAbout: dcid:cpcpAq/Secretariat_Amaravati___APPCB | ||
variableMeasured: dcid:Mean_Concentration_AirPollutant_Ozone | ||
value: 28.0 | ||
typeOf: dcid:StatVarObservation | ||
dcid: "dc/o/8e11gqvkt183b" | ||
|
||
Node: cpcb_air_quality/E15/944d9e6d-ec38-4e61-175a-9bbabfd35f97 | ||
observationDate: "2024-09-24T12:00:00" | ||
unit: dcid:MicrogramsPerCubicMeter | ||
observationAbout: dcid:cpcpAq/Secretariat_Amaravati___IMD | ||
variableMeasured: dcid:Mean_Concentration_AirPollutant_CO | ||
value: 42.0 | ||
typeOf: dcid:StatVarObservation | ||
dcid: "dc/o/h1sjhdxycwwmc" | ||
|
||
Node: cpcb_air_quality/E15/944d9e6d-ec38-4e61-175a-9bbabfd35f97 | ||
observationDate: "2024-09-25T12:00:00" | ||
unit: dcid:MicrogramsPerCubicMeter | ||
observationAbout: dcid:cpcpAq/Secretariat_Amaravati___IMD | ||
variableMeasured: dcid:Mean_Concentration_AirPollutant_CO | ||
value: 40.0 | ||
typeOf: dcid:StatVarObservation | ||
dcid: "dc/o/h1sjhdxycwwmc" |
Oops, something went wrong.