Skip to content

End-user tool for search and retrieval of Wikidata information.

Notifications You must be signed in to change notification settings

darnelleMelvin/wikiframeVG_Backup

 
 

Repository files navigation

wikiframeVG: Wikiframe Visual Graph

Introduction

Welcome to wikiframeVG (Wikiframe Visual Graph), an open-source community initiative and tool aimed to help Wikidata editors and users explore knowledge generated from organized Wikidata sprints. wikiframeVG adopts a community driven, SPARQL template-based approach towards Wikidata graph exploration.

The application interacts with Wikidata's SPARQL query service and provides users with point-and-click tools to search and filter information. No SPARQL or other coding knowledge will be required to retrieve data linked across the Wikidata knowledge graph.

Try out WikiframeVG at https://wikiframe.library.unlv.edu .

Concept

Wikiframe Concept Poster

Design Goals

Wikiframe Design Goal

Project Team

Technologies

  • Python with Django web development framework.
  • Apache web server.
  • MySQL 8 database server.

Project Management

For information on the work plan, see the Project associated with this repository.

For use cases, requirements, and feature descriptions, see the repository wiki.

License

Source code is made available under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). For questions, contact Darnelle Melvin.

Cite This Work

[1] Melvin, D., Hulet. A., & Lampert, C. K. (2023). WikiframeVG: A SPARQL template-based framework for Wikidata graph exploration and visualization. In L-A Kaffee, S. Razniewski, K. Alghamdi, & H. Arnaout (Eds.), Proceedings of the Wikidata Workshop 2023 co-located with the 22nd International Semantic Web Conference (ISWC2023). CEUR Workshop Proceedings. (https://ceur-ws.org/Vol-3640/paper15.pdf)

About

End-user tool for search and retrieval of Wikidata information.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 59.4%
  • HTML 28.1%
  • JavaScript 9.4%
  • CSS 3.1%