Skip to content
This repository has been archived by the owner on Nov 25, 2022. It is now read-only.

Commit

Permalink
[Frontend][TFLite] fix detection_postprocess's non_max_suppression_at…
Browse files Browse the repository at this point in the history
…trs["force_suppress"] (apache#12593)

* [Frontend][TFLite]fix detection_postprocess's non_max_suppression_attrs["force_suppress"]

Since tvm only supports operators detection_postprocess use_regular_nms
is false, which will suppress boxes that exceed the threshold regardless
of the class when implementing NMS in tflite, in order for the results
of tvm and tflite to be consistent, we need to set force_suppress to
True.

* [Frontend][TFLite]fix detection_postprocess's non_max_suppression_attrs[force_suppress]

Added a test case that reproduces inconsistent results between tvm and tflite
When the force_suppress is false,it will get a good result if you set the force_suppress as true
  • Loading branch information
czh978 authored and xinetzone committed Nov 25, 2022
1 parent b022124 commit f21c00c
Show file tree
Hide file tree
Showing 2 changed files with 27 additions and 12 deletions.
2 changes: 1 addition & 1 deletion python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -3355,7 +3355,7 @@ def convert_detection_postprocess(self, op):
non_max_suppression_attrs = {}
non_max_suppression_attrs["return_indices"] = False
non_max_suppression_attrs["iou_threshold"] = custom_options["nms_iou_threshold"]
non_max_suppression_attrs["force_suppress"] = False
non_max_suppression_attrs["force_suppress"] = True
non_max_suppression_attrs["top_k"] = anchor_boxes
non_max_suppression_attrs["max_output_size"] = custom_options["max_detections"]
non_max_suppression_attrs["invalid_to_bottom"] = False
Expand Down
37 changes: 26 additions & 11 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -4311,13 +4311,8 @@ def test_forward_matrix_diag():
# ----------------


def test_detection_postprocess():
"""Detection PostProcess"""
tf_model_file = tf_testing.get_workload_official(
"http://download.tensorflow.org/models/object_detection/"
"ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz",
"ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03/tflite_graph.pb",
)
def _test_detection_postprocess(tf_model_file, box_encodings_size, class_predictions_size):
"""One iteration of detection postProcess with given model and shapes"""
converter = tf.lite.TFLiteConverter.from_frozen_graph(
tf_model_file,
input_arrays=["raw_outputs/box_encodings", "raw_outputs/class_predictions"],
Expand All @@ -4328,16 +4323,16 @@ def test_detection_postprocess():
"TFLite_Detection_PostProcess:3",
],
input_shapes={
"raw_outputs/box_encodings": (1, 1917, 4),
"raw_outputs/class_predictions": (1, 1917, 91),
"raw_outputs/box_encodings": box_encodings_size,
"raw_outputs/class_predictions": class_predictions_size,
},
)
converter.allow_custom_ops = True
converter.inference_type = tf.lite.constants.FLOAT
tflite_model = converter.convert()
np.random.seed(0)
box_encodings = np.random.uniform(size=(1, 1917, 4)).astype("float32")
class_predictions = np.random.uniform(size=(1, 1917, 91)).astype("float32")
box_encodings = np.random.uniform(size=box_encodings_size).astype("float32")
class_predictions = np.random.uniform(size=class_predictions_size).astype("float32")
tflite_output = run_tflite_graph(tflite_model, [box_encodings, class_predictions])
tvm_output = run_tvm_graph(
tflite_model,
Expand Down Expand Up @@ -4382,6 +4377,26 @@ def test_detection_postprocess():
)


def test_detection_postprocess():
"""Detection PostProcess"""
box_encodings_size = (1, 1917, 4)
class_predictions_size = (1, 1917, 91)
tf_model_file = tf_testing.get_workload_official(
"http://download.tensorflow.org/models/object_detection/"
"ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz",
"ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03/tflite_graph.pb",
)
_test_detection_postprocess(tf_model_file, box_encodings_size, class_predictions_size)

box_encodings_size = (1, 2034, 4)
class_predictions_size = (1, 2034, 91)
tf_model_file = download_testdata(
"https://github.com/czh978/models_for_tvm_test/raw/main/tflite_graph_with_postprocess.pb",
"tflite_graph_with_postprocess.pb",
)
_test_detection_postprocess(tf_model_file, box_encodings_size, class_predictions_size)


#######################################################################
# Custom Converter
# ----------------
Expand Down

0 comments on commit f21c00c

Please sign in to comment.