Skip to content

Commit

Permalink
YOLOv5 AWS Inferentia Inplace compatibility updates (ultralytics#2953)
Browse files Browse the repository at this point in the history
* Added flag to enable/disable all inplace and assignment operations

* Removed shape print statements

* Scope Detect/Model import to avoid circular dependency

* PEP8

* create _descale_pred()

* replace lost space

* replace list with tuple

Co-authored-by: Glenn Jocher <[email protected]>
  • Loading branch information
2 people authored and danny-schwartz7 committed May 22, 2021
1 parent 090a471 commit 0e06335
Show file tree
Hide file tree
Showing 2 changed files with 47 additions and 21 deletions.
8 changes: 5 additions & 3 deletions models/experimental.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,9 @@ def forward(self, x, augment=False):
return y, None # inference, train output


def attempt_load(weights, map_location=None):
def attempt_load(weights, map_location=None, inplace=True):
from models.yolo import Detect, Model

# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
Expand All @@ -120,8 +122,8 @@ def attempt_load(weights, map_location=None):

# Compatibility updates
for m in model.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True # pytorch 1.7.0 compatibility
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
m.inplace = inplace # pytorch 1.7.0 compatibility
elif type(m) is Conv:
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility

Expand Down
60 changes: 42 additions & 18 deletions models/yolo.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ class Detect(nn.Module):
stride = None # strides computed during build
export = False # onnx export

def __init__(self, nc=80, anchors=(), ch=()): # detection layer
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super(Detect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
Expand All @@ -37,6 +37,7 @@ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)

def forward(self, x):
# x = x.copy() # for profiling
Expand All @@ -52,8 +53,13 @@ def forward(self, x):
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)

y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))

return x if self.training else (torch.cat(z, 1), x)
Expand Down Expand Up @@ -85,12 +91,14 @@ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, i
self.yaml['anchors'] = round(anchors) # override yaml value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
self.inplace = self.yaml.get('inplace', True)
# logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])

# Build strides, anchors
m = self.model[-1] # Detect()
if isinstance(m, Detect):
s = 256 # 2x min stride
m.inplace = self.inplace
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
m.anchors /= m.stride.view(-1, 1, 1)
check_anchor_order(m)
Expand All @@ -105,24 +113,23 @@ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, i

def forward(self, x, augment=False, profile=False):
if augment:
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self.forward_once(xi)[0] # forward
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi[..., :4] /= si # de-scale
if fi == 2:
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
elif fi == 3:
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
y.append(yi)
return torch.cat(y, 1), None # augmented inference, train
return self.forward_augment(x) # augmented inference, None
else:
return self.forward_once(x, profile) # single-scale inference, train

def forward_augment(self, x):
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = self.forward_once(xi)[0] # forward
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
yi = self._descale_pred(yi, fi, si, img_size)
y.append(yi)
return torch.cat(y, 1), None # augmented inference, train

def forward_once(self, x, profile=False):
y, dt = [], [] # outputs
for m in self.model:
Expand All @@ -146,6 +153,23 @@ def forward_once(self, x, profile=False):
logger.info('%.1fms total' % sum(dt))
return x

def _descale_pred(self, p, flips, scale, img_size):
# de-scale predictions following augmented inference (inverse operation)
if self.inplace:
p[..., :4] /= scale # de-scale
if flips == 2:
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
elif flips == 3:
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
else:
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
if flips == 2:
y = img_size[0] - y # de-flip ud
elif flips == 3:
x = img_size[1] - x # de-flip lr
p = torch.cat((x, y, wh, p[..., 4:]), -1)
return p

def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
# https://arxiv.org/abs/1708.02002 section 3.3
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
Expand Down

0 comments on commit 0e06335

Please sign in to comment.