Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pippenger multiscalar multiplication algorithm #249

Merged
merged 11 commits into from
Jun 4, 2019
3 changes: 3 additions & 0 deletions src/backend/serial/scalar_mul/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,6 @@ pub mod straus;

#[cfg(feature = "alloc")]
pub mod precomputed_straus;

#[cfg(feature = "alloc")]
pub mod pippenger;
204 changes: 204 additions & 0 deletions src/backend/serial/scalar_mul/pippenger.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2019 Oleg Andreev
// See LICENSE for licensing information.
//
// Authors:
// - Oleg Andreev <[email protected]>

//! Implementation of a variant of Pippenger's algorithm.

#![allow(non_snake_case)]

use core::borrow::Borrow;

use edwards::EdwardsPoint;
use scalar::Scalar;
use traits::VartimeMultiscalarMul;

#[allow(unused_imports)]
use prelude::*;

/// Implements a version of Pippenger's algorithm.
///
/// The algorithm works as follows:
///
/// Let `n` be a number of point-scalar pairs.
/// Let `w` be a window of bits (6..8, chosen based on `n`, see cost factor).
///
/// 1. Prepare `2^(w-1) - 1` buckets with indices `[1..2^(w-1))` initialized with identity points.
/// Bucket 0 is not needed as it would contain points multiplied by 0.
/// 2. Convert scalars to a radix-`2^w` representation with signed digits in `[-2^w/2, 2^w/2]`.
/// Note: only the last digit may equal `2^w/2`.
/// 3. Starting with the last window, for each point `i=[0..n)` add it to a a bucket indexed by
/// the point's scalar's value in the window.
/// 4. Once all points in a window are sorted into buckets, add buckets by multiplying each
/// by their index. Efficient way of doing it is to start with the last bucket and compute two sums:
/// intermediate sum from the last to the first, and the full sum made of all intermediate sums.
/// 5. Shift the resulting sum of buckets by `w` bits by using `w` doublings.
/// 6. Add to the return value.
/// 7. Repeat the loop.
///
/// Approximate cost w/o wNAF optimizations (A = addition, D = doubling):
///
/// ```ascii
/// cost = (n*A + 2*(2^w/2)*A + w*D + A)*256/w
/// | | | | |
/// | | | | looping over 256/w windows
/// | | | adding to the result
/// sorting points | shifting the sum by w bits (to the next window, starting from last window)
/// one by one |
/// into buckets adding/subtracting all buckets
/// multiplied by their indexes
/// using a sum of intermediate sums
/// ```
///
/// For large `n`, dominant factor is (n*256/w) additions.
/// However, if `w` is too big and `n` is not too big, then `(2^w/2)*A` could dominate.
/// Therefore, the optimal choice of `w` grows slowly as `n` grows.
///
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This documentation should maybe link to section 4 of https://eprint.iacr.org/2012/549.pdf which I believe is the original source of this special case of Pippenger's technique (which is very general).

pub struct Pippenger;

#[cfg(any(feature = "alloc", feature = "std"))]
impl VartimeMultiscalarMul for Pippenger {
type Point = EdwardsPoint;

fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<EdwardsPoint>
where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator<Item = Option<EdwardsPoint>>,
{
use traits::Identity;

let mut scalars = scalars.into_iter();
let size = scalars.by_ref().size_hint().0;

// Digit width in bits. As digit width grows,
// number of point additions goes down, but amount of
// buckets and bucket additions grows exponentially.
let w = if size < 500 {
6
} else if size < 800 {
7
} else {
8
};

let max_digit: usize = 1 << w;
let digits_count: usize = (256 + w - 1) / w; // == ceil(256/w)
let buckets_count: usize = max_digit / 2; // digits are signed+centered hence 2^w/2, excluding 0-th bucket

// Collect optimized scalars and points in buffers for repeated access
// (scanning the whole set per digit position).
let scalars = scalars
.into_iter()
.map(|s| s.borrow().to_radix_2w(w).0);

let points = points
.into_iter()
.map(|p| p.map(|P| P.to_projective_niels()));

let scalars_points = scalars.zip(points).map(|(s,maybe_p)| maybe_p.map(|p| (s,p) ) )
.collect::<Option<Vec<_>>>();
let scalars_points = match scalars_points {
Some(sp) => sp,
None => return None,
};

// Prepare 2^w/2 buckets.
// buckets[i] corresponds to a multiplication factor (i+1).
let mut buckets: Vec<_> = (0..buckets_count)
.map(|_| EdwardsPoint::identity())
.collect();

let mut columns = (0..digits_count).rev().map(|digit_index| {
// Clear the buckets when processing another digit.
for i in 0..buckets_count {
buckets[i] = EdwardsPoint::identity();
}

// Iterate over pairs of (point, scalar)
// and add/sub the point to the corresponding bucket.
// Note: if we add support for precomputed lookup tables,
// we'll be adding/subtractiong point premultiplied by `digits[i]` to buckets[0].
oleganza marked this conversation as resolved.
Show resolved Hide resolved
for (digits, pt) in scalars_points.iter() {
let digit = digits[digit_index];
if digit > 0 {
let b = (digit - 1) as usize;
buckets[b] = (&buckets[b] + pt).to_extended();
} else if digit < 0 {
let b = (-digit - 1) as usize;
buckets[b] = (&buckets[b] - pt).to_extended();
}
}

// Add the buckets applying the multiplication factor to each bucket.
// The most efficient way to do that is to have a single sum with two running sums:
// an intermediate sum from last bucket to the first, and a sum of intermediate sums.
//
// For example, to add buckets 1*A, 2*B, 3*C we need to add these points:
// C
// C B
// C B A Sum = C + (C+B) + (C+B+A)
let mut buckets_intermediate_sum = buckets[buckets_count - 1];
let mut buckets_sum = buckets[buckets_count - 1];
for i in (0..(buckets_count - 1)).rev() {
buckets_intermediate_sum += buckets[i];
buckets_sum += buckets_intermediate_sum;
}

buckets_sum
});

// Take the high column as an initial value to avoid wasting time doubling the identity element in `fold()`.
// `unwrap()` always succeeds because we know we have more than zero digits.
let hi_column = columns.next().unwrap();

Some(
columns
.fold(hi_column, |total, p| total.mul_by_pow_2(w as u32) + p)
.into(),
)
}
}

#[cfg(test)]
mod test {
use super::*;
use constants;
use scalar::Scalar;

#[test]
fn test_vartime_pippenger() {
// Reuse points across different tests
let mut n = 512;
let x = Scalar::from(2128506u64).invert();
let y = Scalar::from(4443282u64).invert();
let points: Vec<_> = (0..n)
.map(|i| constants::ED25519_BASEPOINT_POINT * Scalar::from(1 + i as u64))
.collect();
let scalars: Vec<_> = (0..n)
.map(|i| x + (Scalar::from(i as u64) * y)) // fast way to make ~random but deterministic scalars
.collect();

let premultiplied: Vec<EdwardsPoint> = scalars
.iter()
.zip(points.iter())
.map(|(sc, pt)| sc * pt)
.collect();

while n > 0 {
let scalars = &scalars[0..n].to_vec();
let points = &points[0..n].to_vec();
let control: EdwardsPoint = premultiplied[0..n].iter().sum();

let subject = Pippenger::vartime_multiscalar_mul(scalars.clone(), points.clone());

assert_eq!(subject.compress(), control.compress());

n = n / 2;
}
}
}
3 changes: 3 additions & 0 deletions src/backend/vector/scalar_mul/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,3 +17,6 @@ pub mod straus;

#[cfg(feature = "alloc")]
pub mod precomputed_straus;

#[cfg(feature = "alloc")]
pub mod pippenger;
165 changes: 165 additions & 0 deletions src/backend/vector/scalar_mul/pippenger.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2019 Oleg Andreev
// See LICENSE for licensing information.
//
// Authors:
// - Oleg Andreev <[email protected]>

#![allow(non_snake_case)]

use core::borrow::Borrow;

use backend::vector::{CachedPoint, ExtendedPoint};
use edwards::EdwardsPoint;
use scalar::Scalar;
use traits::{Identity, VartimeMultiscalarMul};

#[allow(unused_imports)]
use prelude::*;

/// Implements a version of Pippenger's algorithm.
///
/// See the documentation in the serial `scalar_mul::pippenger` module for details.
pub struct Pippenger;

#[cfg(any(feature = "alloc", feature = "std"))]
impl VartimeMultiscalarMul for Pippenger {
type Point = EdwardsPoint;

fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<EdwardsPoint>
where
I: IntoIterator,
I::Item: Borrow<Scalar>,
J: IntoIterator<Item = Option<EdwardsPoint>>,
{
let mut scalars = scalars.into_iter();
let size = scalars.by_ref().size_hint().0;
let w = if size < 500 {
6
} else if size < 800 {
7
} else {
8
};

let max_digit: usize = 1 << w;
let digits_count: usize = (256 + w - 1) / w; // == ceil(256/w)
let buckets_count: usize = max_digit / 2; // digits are signed+centered hence 2^w/2, excluding 0-th bucket

// Collect optimized scalars and points in a buffer for repeated access
// (scanning the whole collection per each digit position).
let scalars = scalars
.into_iter()
.map(|s| s.borrow().to_radix_2w(w).0);

let points = points
.into_iter()
.map(|p| p.map(|P| CachedPoint::from(ExtendedPoint::from(P))));

let scalars_points = scalars.zip(points).map(|(s,maybe_p)| maybe_p.map(|p| (s,p) ) )
.collect::<Option<Vec<_>>>();
let scalars_points = match scalars_points {
Some(sp) => sp,
None => return None,
};

// Prepare 2^w/2 buckets.
// buckets[i] corresponds to a multiplication factor (i+1).
let mut buckets: Vec<ExtendedPoint> = (0..buckets_count)
.map(|_| ExtendedPoint::identity())
.collect();

let mut columns = (0..digits_count).rev().map(|digit_index| {
// Clear the buckets when processing another digit.
for i in 0..buckets_count {
buckets[i] = ExtendedPoint::identity();
}

// Iterate over pairs of (point, scalar)
// and add/sub the point to the corresponding bucket.
// Note: if we add support for precomputed lookup tables,
// we'll be adding/subtractiong point premultiplied by `digits[i]` to buckets[0].
for (digits, pt) in scalars_points.iter() {
let digit = digits[digit_index];
if digit > 0 {
let b = (digit - 1) as usize;
buckets[b] = &buckets[b] + pt;
} else if digit < 0 {
let b = (-digit - 1) as usize;
buckets[b] = &buckets[b] - pt;
}
}

// Add the buckets applying the multiplication factor to each bucket.
// The most efficient way to do that is to have a single sum with two running sums:
// an intermediate sum from last bucket to the first, and a sum of intermediate sums.
//
// For example, to add buckets 1*A, 2*B, 3*C we need to add these points:
// C
// C B
// C B A Sum = C + (C+B) + (C+B+A)
let mut buckets_intermediate_sum = buckets[buckets_count - 1];
let mut buckets_sum = buckets[buckets_count - 1];
for i in (0..(buckets_count - 1)).rev() {
buckets_intermediate_sum =
&buckets_intermediate_sum + &CachedPoint::from(buckets[i]);
buckets_sum = &buckets_sum + &CachedPoint::from(buckets_intermediate_sum);
}

buckets_sum
});

// Take the high column as an initial value to avoid wasting time doubling the identity element in `fold()`.
// `unwrap()` always succeeds because we know we have more than zero digits.
let hi_column = columns.next().unwrap();

Some(
columns
.fold(hi_column, |total, p| {
&total.mul_by_pow_2(w as u32) + &CachedPoint::from(p)
})
.into(),
)
}
}

#[cfg(test)]
mod test {
use super::*;
use constants;
use scalar::Scalar;

#[test]
fn test_vartime_pippenger() {
// Reuse points across different tests
let mut n = 512;
let x = Scalar::from(2128506u64).invert();
let y = Scalar::from(4443282u64).invert();
let points: Vec<_> = (0..n)
.map(|i| constants::ED25519_BASEPOINT_POINT * Scalar::from(1 + i as u64))
.collect();
let scalars: Vec<_> = (0..n)
.map(|i| x + (Scalar::from(i as u64) * y)) // fast way to make ~random but deterministic scalars
.collect();

let premultiplied: Vec<EdwardsPoint> = scalars
.iter()
.zip(points.iter())
.map(|(sc, pt)| sc * pt)
.collect();

while n > 0 {
let scalars = &scalars[0..n].to_vec();
let points = &points[0..n].to_vec();
let control: EdwardsPoint = premultiplied[0..n].iter().sum();

let subject = Pippenger::vartime_multiscalar_mul(scalars.clone(), points.clone());

assert_eq!(subject.compress(), control.compress());

n = n / 2;
}
}
}
Loading