- Rethinking of Pedestrian Attribute Recognition: Realistic Datasets and A Strong Baseline
- Bag of Tricks and A Strong Baseline for Deep Person Re-identification
- Omni-Scale Feature Learning for Person Re-Identification
- PyTorch Template Project by victoresque
- Torchreid
- Install anaconda
conda env create -f environment.yml
conda activate reid
- Automatic download and extract dataset.
- Manual download from github.com/dangweili/pedestrian-attribute-recognition-pytorch
- PETA
data_dir/ |--peta/ | |--processed/ | | |--images/ | | | |--00001.png | | | |--00002.png | | | |--... | | |--PETA.mat
- PA-100K
data_dir/ |--pa_100k/ | |--processed/ | | |--images/ | | | |--0000001.png | | | |--0000002.png | | | |--... | | |--annotation.mat
- PETA
python3 train.py --config <path/to/config_file.yml> --colab <true if run on colab else false>
- Using config file in config folder.
- Add new config file based on config/base_epoch.yml or config/base_episode.yml.
backbone | bn after linear | Head | Loss | mA | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|
resnet50 | ✓ | BNHead | CEL_Sigmoid | 84.79 | 80.07 | 88.28 | 86.24 | 86.98 |
resnet50 | ✓ | BNHead | BCEWithLogitsLoss | 79.47 | 76.33 | 87.22 | 82.38 | 84.33 |
resnet50_ibn_a_nl | ✓ | BNHead | CEL_Sigmoid | 83.49 | 79.60 | 88.89 | 85.14 | 86.65 |
osnet | ✓ | ReductionHead | CEL_Sigmoid | 77.67 | 73.44 | 84.17 | 80.60 | 81.97 |
osnet | ✓ | ReductionHead | BCEWithLogitsLoss | 71.00 | 67.49 | 85.60 | 72.94 | 77.94 |
osnet | ✓ | BNHead | CEL_Sigmoid | 77.89 | 72.57 | 83.68 | 79.96 | 81.32 |
resnet50 | BNHead | CEL_Sigmoid | 82.67 | 78.61 | 88.53 | 84.17 | 85.91 | |
resnet50_ibn_a_nl | BNHead | CEL_Sigmoid | 82.24 | 78.57 | 88.48 | 84.20 | 85.91 | |
osnet | ReductionHead | CEL_Sigmoid | 77.93 | 73.00 | 83.82 | 80.65 | 81.81 | |
osnet | BNHead | CEL_Sigmoid | 77.72 | 73.04 | 84.65 | 79.82 | 81.68 |
backbone | bn after linear | Head | Loss | mA | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|
resnet50 | ✓ | BNHead | CEL_Sigmoid | 63.62 | 85.44 | 88.28 | 90.51 | 88.08 |
backbone | bn after linear | Head | Loss | mA | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|
resnet50 | ✓ | BNHead | CEL_Sigmoid | 79.50 | 78.89 | 88.17 | 86.28 | 86.80 |