rucrf contains a trainer and an estimator for Conditional Random Fields (CRFs). This library supports:
- lattices with variable length edges,
- L1 and L2 regularization, and
- multi-threading during training.
use std::num::NonZeroU32;
use rucrf::{Edge, FeatureProvider, FeatureSet, Lattice, Model, Trainer};
// Train:
// 京(kyo) 都(to)
// 東(to) 京(kyo)
// 京(kei) 浜(hin)
// 京(kyo) の(no) 都(miyako)
//
// Test:
// 水(mizu) の(no) 都(miyako)
//
// 1-gram features:
// 京: 1, 都: 2, 東: 3, 浜: 4, の: 5, 水: 6
// 2-gram features:
// kyo: 1, to: 2, kei: 3, hin: 4, no: 5, miyako: 6, mizu: 7
let mut provider = FeatureProvider::new();
let label_京kyo = provider.add_feature_set(FeatureSet::new(
&[NonZeroU32::new(1).unwrap()],
&[NonZeroU32::new(1)],
&[NonZeroU32::new(1)],
))?;
let label_都to = provider.add_feature_set(FeatureSet::new(
&[NonZeroU32::new(2).unwrap()],
&[NonZeroU32::new(2)],
&[NonZeroU32::new(2)],
))?;
let label_東to = provider.add_feature_set(FeatureSet::new(
&[NonZeroU32::new(3).unwrap()],
&[NonZeroU32::new(2)],
&[NonZeroU32::new(2)],
))?;
let label_京kei = provider.add_feature_set(FeatureSet::new(
&[NonZeroU32::new(1).unwrap()],
&[NonZeroU32::new(3)],
&[NonZeroU32::new(3)],
))?;
let label_浜hin = provider.add_feature_set(FeatureSet::new(
&[NonZeroU32::new(4).unwrap()],
&[NonZeroU32::new(4)],
&[NonZeroU32::new(4)],
))?;
let label_のno = provider.add_feature_set(FeatureSet::new(
&[NonZeroU32::new(5).unwrap()],
&[NonZeroU32::new(5)],
&[NonZeroU32::new(5)],
))?;
let label_都miyako = provider.add_feature_set(FeatureSet::new(
&[NonZeroU32::new(2).unwrap()],
&[NonZeroU32::new(6)],
&[NonZeroU32::new(6)],
))?;
let label_水mizu = provider.add_feature_set(FeatureSet::new(
&[NonZeroU32::new(6).unwrap()],
&[NonZeroU32::new(7)],
&[NonZeroU32::new(7)],
))?;
let mut lattices = vec![];
// 京都 (kyo to)
let mut lattice = Lattice::new(2)?;
lattice.add_edge(0, Edge::new(1, label_京kyo))?;
lattice.add_edge(1, Edge::new(2, label_都to))?;
lattice.add_edge(0, Edge::new(1, label_京kei))?;
lattice.add_edge(1, Edge::new(2, label_都miyako))?;
lattices.push(lattice);
// 東京 (to kyo)
let mut lattice = Lattice::new(2)?;
lattice.add_edge(0, Edge::new(1, label_東to))?;
lattice.add_edge(1, Edge::new(2, label_京kyo))?;
lattice.add_edge(1, Edge::new(2, label_京kei))?;
lattices.push(lattice);
// 京浜 (kei hin)
let mut lattice = Lattice::new(2)?;
lattice.add_edge(0, Edge::new(1, label_京kei))?;
lattice.add_edge(1, Edge::new(2, label_浜hin))?;
lattice.add_edge(0, Edge::new(1, label_京kyo))?;
lattices.push(lattice);
// 京の都 (kyo no miyako)
let mut lattice = Lattice::new(3)?;
lattice.add_edge(0, Edge::new(1, label_京kyo))?;
lattice.add_edge(1, Edge::new(2, label_のno))?;
lattice.add_edge(2, Edge::new(3, label_都miyako))?;
lattice.add_edge(0, Edge::new(1, label_京kei))?;
lattice.add_edge(2, Edge::new(3, label_都to))?;
lattices.push(lattice);
// Generates a model
let trainer = Trainer::new();
let model = trainer.train(&lattices, provider);
// 水の都 (mizu no miyako)
let mut lattice = Lattice::new(3)?;
lattice.add_edge(0, Edge::new(1, label_水mizu))?;
lattice.add_edge(1, Edge::new(2, label_のno))?;
lattice.add_edge(2, Edge::new(3, label_都to))?;
lattice.add_edge(2, Edge::new(3, label_都miyako))?;
let (path, _) = model.search_best_path(&lattice);
assert_eq!(vec![
Edge::new(1, label_水mizu),
Edge::new(2, label_のno),
Edge::new(3, label_都miyako),
], path);
Licensed under either of
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)
at your option.
See the guidelines.