This repository is no longer maintained.
This repository contains a docker image and code used to conduct analyses for the manuscript noted above.
- Clone the repository
git clone https://github.com/d3b-center/pbta-tumor-evolution.git
- Pull the docker container:
docker pull pgc-images.sbgenomics.com/antoniachroni/pbta-tumor-evolution:latest
- Start the docker container, from the
pbta-tumor-evolution
folder, run:
docker run --platform=linux/amd64 --name <CONTAINER_NAME> -d -e PASSWORD=ANYTHING -p 8787:8787 -v $PWD:/home/rstudio/pbta-tumor-evolution pgc-images.sbgenomics.com/antoniachroni/pbta-tumor-evolution:latest
- To execute shell within the docker image, from the
pbta-tumor-evolution
folder, run:
docker exec -ti <CONTAINER_NAME> bash
- Run the download-data.sh shell script to obtain latest data files:
bash download-data.sh
- Navigate to an analysis module and run the shell script:
cd /home/rstudio/pbta-tumor-evolution/analyses/module_of_interest
.
├── analyses
└── sample-distribution-analysis
├── data
├── gencode.v39.primary_assembly.annotation.gtf.gz
└── v1
├── gene-counts-rsem-expected_count-collapsed.rds
├── gene-expression-rsem-tpm-collapsed.rds
├── histologies.tsv
├── md5sum.txt
├── release-notes.md
└── snv-consensus-plus-hotspots.maf.tsv.gz
├── Dockerfile
├── download-data.sh
├── LICENSE
├── README.md
└── scripts
├── install_bioc.r
└── install_github.r
Jo Lynne Rokita (@jharenza) and Antonia Chroni (@AntoniaChroni)
For questions, please submit an issue in https://github.com/rokitalab/tumor-evolution.