Skip to content

Commit

Permalink
MiniCPM-V-2 & MiniCPM-Llama3-V-2_5 example updates (intel-analytics#1…
Browse files Browse the repository at this point in the history
…1988)

* minicpm example updates

* --stream
  • Loading branch information
JinheTang authored and cyita committed Sep 5, 2024
1 parent 6c8252d commit 9a1754b
Show file tree
Hide file tree
Showing 5 changed files with 143 additions and 60 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `chat()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-Llama3-V-2_5 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-Llama3-V-2_5 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
Expand Down Expand Up @@ -106,28 +106,42 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --prompt 'What is in the image?'
```
- chat without streaming mode:
```
python ./chat.py --prompt 'What is in the image?'
```
- chat in streaming mode:
```
python ./chat.py --prompt 'What is in the image?' --stream
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-Llama3-V-2_5 (e.g. `openbmb/MiniCPM-Llama3-V-2_5`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-Llama3-V-2_5'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--stream`: flag to chat in streaming mode

#### Sample Output

#### [openbmb/MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5)

```log
Inference time: xxxx s
-------------------- Input --------------------
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
-------------------- Input Prompt --------------------
What is in the image?
-------------------- Output --------------------
The image features a young child holding a white teddy bear. The teddy bear is dressed in a pink outfit. The child appears to be outdoors, with a stone wall and some red flowers in the background.
-------------------- Chat Output --------------------
The image features a young child holding a white teddy bear. The teddy bear is dressed in a pink dress with a ribbon on it. The child appears to be smiling and enjoying the moment.
```
```log
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
图片里有什么?
-------------------- Chat Output --------------------
图片中有一个小孩,手里拿着一个白色的玩具熊。这个孩子看起来很开心,正在微笑并与玩具互动。背景包括红色的花朵和石墙,为这个场景增添了色彩和质感。
```

The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,12 @@
# limitations under the License.
#


import os
import time
import argparse
import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
Expand All @@ -33,8 +35,8 @@
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--stream', action='store_true',
help='Whether to chat in streaming mode')

args = parser.parse_args()
model_path = args.repo_id_or_model_path
Expand All @@ -45,11 +47,12 @@
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModel.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
load_in_low_bit="sym_int4",
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.half().to(device='xpu')
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()
Expand All @@ -61,23 +64,45 @@
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')

# Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/blob/main/README.md
msgs = [{'role': 'user', 'content': args.prompt}]
st = time.time()
res = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.7
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
msgs = [{'role': 'user', 'content': [image, args.prompt]}]

# ipex_llm model needs a warmup, then inference time can be accurate
model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
)
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Input', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
output_str = res
print('-'*20, 'Output', '-'*20)
print(output_str)

if args.stream:
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
stream=True
)

print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Stream Chat Output', '-'*20)
for new_text in res:
print(new_text, flush=True, end='')
else:
st = time.time()
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
)
torch.xpu.synchronize()
end = time.time()

print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(res)
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `chat()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
Expand Down Expand Up @@ -106,28 +106,41 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --prompt 'What is in the image?'
```
- chat without streaming mode:
```
python ./chat.py --prompt 'What is in the image?'
```
- chat in streaming mode:
```
python ./chat.py --prompt 'What is in the image?' --stream
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--stream`: flag to chat in streaming mode

#### Sample Output

#### [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2)

```log
Inference time: xxxx s
-------------------- Input --------------------
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
-------------------- Input Prompt --------------------
What is in the image?
-------------------- Output --------------------
In the image, there is a young child holding a teddy bear. The teddy bear appears to be dressed in a pink tutu. The child is also wearing a red and white striped dress. The background of the image includes a stone wall and some red flowers.
-------------------- Chat Output --------------------
In the image, there is a young child holding a teddy bear. The teddy bear is dressed in a pink tutu. The child is also wearing a red and white striped dress. The background of the image features a stone wall and some red flowers.
```
```log
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
图片里有什么?
-------------------- Chat Output --------------------
图中是一个小女孩,她手里拿着一只粉白相间的泰迪熊。
```

The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
#



from typing import List, Tuple, Optional, Union
import math
import timm
Expand Down Expand Up @@ -110,6 +111,7 @@ def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
import time
import argparse
import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer
Expand All @@ -125,8 +127,8 @@ def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--stream', action='store_true',
help='Whether to chat in streaming mode')

args = parser.parse_args()
model_path = args.repo_id_or_model_path
Expand All @@ -140,9 +142,9 @@ def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
load_in_low_bit="asym_int4",
optimize_model=True,
trust_remote_code=True,
modules_to_not_convert=["vpm", "resampler", "lm_head"],
use_cache=True)
model = model.half().to(device='xpu')
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()
Expand All @@ -156,7 +158,8 @@ def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
# Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2/blob/main/README.md
msgs = [{'role': 'user', 'content': args.prompt}]
st = time.time()

# ipex_llm model needs a warmup, then inference time can be accurate
res, context, _ = model.chat(
image=image,
msgs=msgs,
Expand All @@ -165,12 +168,40 @@ def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
sampling=False,
temperature=0.7
)
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Input', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
output_str = res
print('-'*20, 'Output', '-'*20)
print(output_str)
if args.stream:
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.7
)

print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Stream Chat Output', '-'*20)
for new_text in res:
print(new_text, flush=True, end='')
else:
st = time.time()
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.7
)
torch.xpu.synchronize()
end = time.time()

print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(res)
Original file line number Diff line number Diff line change
Expand Up @@ -108,11 +108,11 @@ set SYCL_CACHE_PERSISTENT=1

- chat without streaming mode:
```
python ./generate.py --prompt 'What is in the image?'
python ./chat.py --prompt 'What is in the image?'
```
- chat in streaming mode:
```
python ./generate.py --prompt 'What is in the image?' --stream
python ./chat.py --prompt 'What is in the image?' --stream
```

> [!TIP]
Expand Down

0 comments on commit 9a1754b

Please sign in to comment.