Skip to content

cybergis/cybergis-compute-hello-world

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CyberGIS Compute Hello World Example

Example project on how to modify your code to run on CyberGIS Compute.

Specify How You'd Like to Run Your Project

Include a manifest.json file under your project's root path. It defines how your projects would run on HPC.

In the file, you should include some basic information like:

  • name: string: name of the project
  • description: string: a brief description
  • container: string: the container environment to run your code on
    • available containers: python
    • for custom container environment, contact [email protected]
  • supported_hpc?: Array<string>: supported computing resources, see doc. Default ['keeling_community']
  • default_hpc?: string: default computing resources. Default to first defined in supported_hpc

Then, you should define the execution steps for your project:

  1. pre_processing_stage?: string: an optional bash command that runs when the project begins. Single threaded, non-MPI.
  2. execution_stage: string: the required bash command that runs in multi-threaded MPI and executes the project.
    • if you'd like to run sbatch command, use execution_stage_in_raw_sbatch: Array<string>
  3. post_processing_stage?: string: an optional bash command that runs after execution finishes. Single threaded, non-MPI.

After that, define how you'd like your users to interact with your project by passing in parameters. Define your parameters in param_rules?: {[keys: string]: any} like:

{
    // ...
     "param_rules": {
         // define a string input
        "input_a": {
            "type": "integer",
            "require": true,
            "max": 100,
            "min": 0,
            "default_value": 50,
            "step": 10
        },
        // define a select options input
        "input_b": {
            "type": "string_option",
            "options": ["foo", "bar"],
            "default_value": "foo"
        }
    }
}

Finally, define the HPC resources you'd like to use. Supported types are:

{
    // ...
    "slurm_input_rules": {
        "num_of_node": integerRule,     // number of nodes, ie. SBATCH nodes
        "num_of_task": integerRule,     // number of tasks, ie. SBATCH ntasks
        "time": integerRule,            // runtime limit, ie. SBATCH time
        "cpu_per_task": integerRule,    // number of CPU per task, ie. SBATCH cpus-per-task
        "memory_per_cpu": integerRule,  // amount of memory per CPU, ie. SBATCH mem-per-cpu
        "memory_per_gpu": integerRule,  // amount of memory per GPU, ie. SBATCH mem-per-gpu
        "memory": integerRule,          // total memory allocated, ie. SBATCH mem
        "gpus": integerRule,            // total GPU allocated, ie. SBATCH gpus
        "gpus_per_node": integerRule,   // number of GPU per node, ie. SBATCH gpus-per-node
        "gpus_per_socket": integerRule, // number of GPU per socket, ie. SBATCH gpus-per-socket
        "gpus_per_task": integerRule,   // number of GPU per task, ie. SBATCH gpus-per-task
        "partition": stringOptionRule   // partition name on HPC, ie. SBATCH partition
    }
}

integerRule type configs are defined as such:

{
    "slurm_input_rules": {
        // regular integer values
        "num_of_task": {
            "max": 6,
            "min": 1,
            "default_value": 4,
            "step": 1
        },
        // united specific configs like
        // 'GB' | 'MB' | 'Minutes' | 'Hours' | 'Days'
        "time": {
            "max": 50,
            "min": 10,
            "default_value": 20,
            "step": 1,
            "unit": "Minutes"
        }
    }
}

stringOptionRule can be defined as such:

{
    "slurm_input_rules": {
        // ...
        "partition": {
            "type": "string_option",
            "options": ["option_a", "option_b", "option_c"],
            "default_value": "option_a"
        }
    }
}

How to Read Input Parameters and Other Job information?

CyberGIS Compute creates a job.json file that includes:

{
   "job_id": string,
   "user_id": string,
   "hpc": string,
   // user parameters input
   "param": {
       "param_a": 1,
       "param_b": "value"
   },
   "executable_folder": string, // path to the executable code
   "data_folder": string, // path to the uploaded data
   "result_folder": string // path to the download data folder
}

If your application does not support reading JSON file, you can access it through system environment variables

import os
os.environ['job_id']
os.environ['param_param_a'] # access param['param_a']

Some Tips

  1. Because CyberGIS Compute downloads the result_folder using globus, we recommend putting downloadable data into the result_folder. You can get the full path in job.json.
  2. If you want to execute multiple command (ex. setup something), you can create a bash script and just run bash some_script.sh in your execution_stage.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •